

NACHOS, a CubeSat-based high-resolution UV-Visible hyperspectral imager for remote sensing of trace gases: System overview, science objectives, and preliminary results

Steven P. Love*

Kirk W. Post, Logan A. Ott, Magdalena E. Dale, Claira L. Safi, Kerry G. Boyd, Hannah D. Mohr, Christian Ward, Michael Caffrey, James P. Theiler, Bernard R. Foy, Markus Hehlen, C. Glen Peterson, Ryan Hemphill, James A. Wren, Arthur A. Guthrie, Nicholas A. Dallmann, Paul S. Stein, Aaron G. Meyer, and Manvendra K. Dubey

> Los Alamos National Laboratory Los Alamos, NM 87545 * splove@lanl.gov

NACHOS: NanoSat Atmospheric Chemistry Hyperspectral Observation System

Challenge: Miniaturization to CubeSat scale while maintaining performance

- Offner-type hyperspectral imager with f/2.9 optics (high throughput)
- High-efficiency ruled, blazed grating (custom fabricated by Bach Research)
- Teledyne/e2v UV-optimized CCD array, 70% QE: (updated version of array used in New Horizons LORRI instrument)
- Internal LED-based on-board calibration system provides CCD nonuniformity correction at the 0.1% level

Spectrometer & Electronics comprise a 1.5U+ package

Goal is to produce a trace-gas hyperspectral imaging capability on a CubeSat platform, with eventual multi-satellite constellations

NASA Ozone Monitoring Instrument (OMI)

- 270-500 nm, 0.5-1.0 nm resolution
- 65 kg (instrument only)
- 50x40x35 cm³

NanoSat Atmospheric Chemistry Hyperspectral Observation System (NACHOS)

- 290-500 nm, 1.3 nm resolution, 0.6 nm sampling
- 4 kg (complete satellite)*
- 10x10x15 cm³ (1.5U instrument); 10x10x30 cm³ (3U CubeSat)

* Now ballasted up to 6.25 kg to increase orbital lifetime

Major NACHOS Project Goal: On-Orbit validation of our streamlined onboard hyperspectral processing algorithms Tests of LANL NACHOS Algorithms using OMI data on African volcanic SO₂ plume:

Comparison of published retrieval¹ of the SO₂ plume from Nyamulagira volcano (left) with on-board processing results and

execution times of the NACHOS Adaptive Coherence Estimator (ACE) detection algorithm² (right) for the same

320x320x1444 OMI dataset.

¹K. Yang, N. A. Krotkov, A. J. Krueger, S. A. Carn, P. K. Bhartia, and P. F. Levelt, "Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument: Comparison and limitations," *J. Geophysical Research: Atmospheres* **112**, p. D24S43 (2007).

²J. Theiler, B. R. Foy, C. Safi, and S. P. Love, "Onboard CubeSat data processing for hyperspectral detection of chemical plumes", *Proc. SPIE* **10644**, *Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXIV*, 1064405 (2018); https://doi.org/10.1117/12.2305278

Two NACHOS CubeSats are now in orbit

Launched Feb. 19, 2022 NG-17 Cygnus ISS resupply mission

400 km, 51.6°inclination orbit

NACHOS-2

Launched July 2, 2022 Virgin Orbit S28A "Straight Up" mission 500 km, 45°inclination orbit

NACHOS

NACHOS Niche: Targeted, high spatial resolution gas imaging

Ground pixel size comparison:

NACHOS vs. current & planned gas imaging satellite instruments

NACHOS pixel: ~0.375 km at 500 km altitude NACHOS 350-pixel swath width corresponds to a ~130 km swath at 500 km altitude (15°full-angle across-track f.o.v.) Envisioned NACHOS constellation would provide frequent target revisits

Single-pixel size comparison, NACHOS vs. TEMPO

Science applications: NO₂ – air quality; fossil fuel greenhouse gas tracking and attribution

OMI provides regional-scale imagery:

-Four Comers power plants Pasc (1015 molecules per cm3) NASA OMI Image ...of urban areas ...or individual power plants

NACHOS will provide local-scale imagery

Modeled NO₂ images at roughly NACHOS spatial resolution

Science applications: SO₂ imaging for volcanology

OMI Image of globe-

Soufriere Eruption:

spanning SO₂ plume from

OMI, etc. can image SO₂ plumes from LARGE events

10

 $SO_{2} column [DU]$

With NACHOS's high spatial resolution, can detect low-level passive degassing, new emissions at recently awakened volcanoes, map satellite vents, ...

Typical passive degassing (White Island, NZ)

... and many more:

- Tropospheric ozone
- Formaldehyde from wildfires
- Aerosols, absorbing (black soot) vs. scattering – spectrally distinguishable in this region
- Additional volcanic gases, BrO, IO, OCIO, etc.
- NACHOS engineering units are also very portable ground-based HSI's. Coordinated space- and groundbased measurements are planned.

Figure from: C. Oppenheimer, B. Scaillet, and R. S. Martin, "Sulfur Degassing From Volcanoes: Source Conditions, Surveillance, Plume Chemistry and Earth System Impacts," *Reviews in Mineralogy & Geochemistry* **73**, 363-421 (2011).

NACHOS optical payload assembly

NACHOS business end (with thermistors added for TVAC test)

NACHOS

NACHOS Payload hosted on LANL's 3rd-Generation CubeSat bus

Addition of mass ballast to increase orbital lifetime

- Our deployable solar panels are great for providing lots of power, but the their large surface area creates greater drag in low earth orbit than is typical for a 3U CubeSat. With the advancing solar cycle, this becomes significant.
- Improving the mass/area ratio by adding ~2 kg of ballast, increasing total mass to 6.25 kg, provides an acceptable ~1 year or better lifetime.

Tungsten Polymer Ballast

NACHOS

- Thanks to Rick Kohnert of CU, who pointed us towards this material
- Ecomass Technologies, Austin TX
 - Compound 1700TU96
 - 30% PA12 nylon, 70% Tungsten powder (by mass)
 - Meets ODAR requirements
- Low Outgassing
- Highly Machinable

CCD Sensor: Teledyne/e2v CCD42-20 NIMO, Back-illuminated, UV AR-coated – Excellent quantum efficiency, ~70%; Substantial dark current for T>0°C

Passive management of CCD, optics, and battery temperatures

Modeled temperatures over five orbits:

NACHOS thermal management surface treatments

NACHOS-1 On-Orbit T Data vs. Model

NACHOS-1 On-Orbit Temperatures

30

LED-based onboard CCD non-uniformity calibration

NACHOS test spectra

Hg-vapor Calibration Lamp:

SO₂ and NO₂ gas-cell spectra:

Environmental Testing

Vibration

1.0

Signal (a.u.) 9.0 7.0 8.0

0.2

0└─ 100

150

X (pixel)

Thermal Vacuum

Outdoor Testing

Most of the sharp spectral features seen here arise from the solar spectrum.

This ubiquitous solar spectrum will be used for on-orbit spectral calibration

250 -

200 ·

150

100

25

Coal-fired power plants near Farmington, NM

Coal-fired power plants near Farmington, NM

os Alan

Coal-fired power plants near Farmington, NM

250 ·

Coal-fired power plants near Farmington, NM

Coal-fired power plants near Farmington, NM

On-orbit operations are just beginning

NACHOS-2 Context Camera Images

Payload-end camera:

Host-end camera:

First-Light NACHOS-2 spectrum (uncalibrated, random targeting) – Downlinked August 7, 2022

CHOS

- Solar Fraunhofer lines appear as they should
- Excellent spectrometer focus and alignment, virtually unchanged from pre-launch

