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ABSTRACT 

 

The development of the real estate swap market offers many opportunities for 

investors to adjust the exposure of their portfolios to real estate. A number of 

OTC transactions have been observed in markets around the world. In this 

paper we examine the Japanese commercial real estate market from the point of 

view of an investor holding a portfolio of properties seeking to reduce the 

portfolio exposure to the real estate market by swapping an index of real estate 

for LIBOR. 

This paper explores the practicalities of hedging portfolios comprising small 

numbers of individual properties against an appropriate index. We use the 

returns from 74 properties owned by Japanese Real Estate Investment Trusts 

over the period up to September 2007. The paper also discusses and applies the 

appropriate stochastic processes required to model real estate returns in this 

application and presents alternative ways of reporting hedging effectiveness 

We find that the development of the derivative does provide the capacity for 

hedging market risk but that the effectiveness of the hedge varies considerably 

over time. We explore the factors that cause this variability. 

 

 

 

Introduction 
The development of real estate derivatives offers investors considerable 

flexibility when seeking to include real estate in a mixed asset portfolio. A market 

in which derivatives could be traded would seem to enhance the value of real 

estate since it would allow investors to alter their exposure to real estate without 

the large transaction costs and illiquidity endemic to the private real estate 

market. There are, however, two issues that need to be considered before 

arguing for an increased holding of real estate within institutional mixed asset 

portfolios. First, the pricing and efficiency of the derivatives market might limit its 
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usefulness if spreads in, say, the swap market for real estate were very large 

and/or volatile. This is mainly an empirical question that requires more trading 

and market data to be researched. The second is the ability of investors to 

hedge their individual real estate assets by operating in the swap market. It is 

this second issue that is explored in this paper.  

 

The object is to estimate, using data from individual properties, how effectively 

might investors modify their portfolio exposure to real estate by operating in the 

total return swap market. The study is based on Japanese properties, but the 

principles, techniques and findings apply in general terms to real estate markets 

internationally. In Section 1, we place this study within the context of related 

literature. In Section 2, we develop a model for analyzing the returns from the 

real estate portfolio hedged with total returns swaps (hereafter TRS). We also 

discuss and define hedging effectiveness. In Section 3 we discuss the data 

applied to this study and the model estimation. In Section 4, we show the results 

of the hedging effectiveness and consider the factors that affect hedging 

effectiveness. In Section 5, we assess the actual performance of hedged 

portfolios TRS. Finally we draw our conclusions in Section 6. 

 

 

 

1. Swap Market for Real Estate 
 
1.1 Hedging Real Estate Investment Risk 
When investors hold assets such as real estate, they may be faced with the 

need to adjust their portfolio exposure to the underlying market. With illiquid 

markets, portfolio adjustment may be very costly and in heterogeneous markets, 

once a specific asset is sold, it may be difficult or impossible to replace. Thus the 

need for some process by which market exposure might be adjusted would 

seem to be a necessary condition of creating a successful environment for 
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holding real estate. This, in turn, would seem to be provided by the development 

of derivative products such as futures, options and swaps. It is therefore logical 

for researchers to address the opportunities created by establishing derivative 

markets in real estate. 

 

One obvious problem with a heterogeneous asset is basis risk and the 

correlation between the returns of the asset held in the portfolio and the hedging 

instrument. The first study focusing on the availability of TRS for real estate 

investment was Park and Switzer (1995, 1996) but other authors have also 

addressed similar issues. Case and Shiller (1996) show that the mortgage 

default risk can be hedged by the futures and options based on a real estate 

index. They focus on the correlation between the change of default probability 

and the real estate index.  Shiller and Weiss (1999) propose insurance policies 

to enable individuals to protect themselves against the risks of falls in the price of 

their homes. Other studies include empirical analysis of the real estate market,  

Englund et al (2002) and Iacoviello and Ortalo-Magne (2003) analyze the risk 

and the expected return of the hedge created by shorting real-estate stocks and 

an index whilst Syz et al. (2007) address the hedging of real estate using an 

index, and indicate the importance of correlation between the real asset and the 

real estate index.  

 

Following Park and Switzer (1995, 1996), we take as our starting point, the view 

of real estate owners who wish to modify their exposure to future fluctuations in 

the market by using TRS. Conventionally, this could be managed by swapping 

the total return on a nominal amount of real estate (or a nominal value of a 

specified real estate index) for short-term interest rates (adjusted by a premium 

or discount to reflect market conditions in the swap market), This transaction 

could reduce the exposure of the portfolio to future fluctuations in the real estate 

market over the designated period, leaving the real estate owner to bear only the 

basis risk of their portfolio. In financial terms, this would imply that real estate 
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owners could hold onto the “alpha” but eliminate the “beta” or systematic risk of 

their real estate assets. But such a result critically depends on the relative sizes 

of the volatility of the swap spread and the basis risk of real estate portfolios. 

 

 

1.2 Spread of TRS 
The pricing of TRS is derived by Buttimer et al (1997) and evolved by Bjork and 

Clapham (2002). Though Bjork and Clapham (2002) indicate the theoretical 

price of the TRS is zero, Patel and Pereira (2008) show that the price is non-zero 

under the existence of counterparty default risk. They argue that TRS payers 

must charge a spread over the market interest rate that compensates them for 

the exposure to this additional risk. However they also indicate that computed 

spreads on IPD indices are much lower compared to a sample of quotes they 

obtained from one of the traders in the market. As they point out, the actual 

spreads observed in the swap market for real estate are larger than their 

counterparts in the equity market, partly because the swap market is a new 

market and the spreads are (as was the case for equity market spreads), both 

more variable and larger than those observed in more mature markets. Partly 

also because the swap pricing for real estate assets is more difficult to arbitrage 

because of the high transaction costs for buying and selling the underlying 

asset .Amihud and Mendelson (1989) estimate the effect of illiquidity on stock 

returns, and Benveniste et al (2001) show that creating liquid equity claims on 

relatively illiquid property asset increases value by 12-22% through their analysis 

on the REIT market. Moreover Collett et al (2003) indicate that the holding period 

for U.K. real estate is considerably longer than the holding periods reported for 

equities, and those holding periods have varied over the time period giving rise 

to illiquidity and high transaction costs. It not only makes TRS pricing difficult but 

also makes the planning of the hedging strategy more complicated. Bond et al 

(2007) show that marketing time uncertainty can be reduced by constructing a 

portfolio, but that at least 10 properties are necessary to reduce the risk. 
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1.3 The Japanese Real Estate Market 
After the ‘Bubble’ from 1986 until 1992 Japanese real estate market plunged into 

a serious depression which has been called the ‘lost decade’. However, the 

market condition after 2000 was much improved to the extent that a Japanese 

REIT (J-REIT) market was established in 2001. The J-REIT market has since 

expanded until the number of companies traded exceeded 40 with a total market 

value of around 5 trillion JPY in the beginning of 2007. 

 

IPD (Japan) started to publish a monthly indicator of the Japanese real estate 

market in 2006, and the first deal based on the index of IPD Japan was executed 

offshore in 2007. We can therefore claim that the real estate derivatives market 

in Japan has started although in a limited way. However this market is expected 

to grow and the number of participants will also increase. The Ministry of Land, 

Infrastructure, Transport and Tourism in Japan held the first workshop of real 

estate derivatives and published a report in 2007. The report highlighted the 

conditions and policy required to expand the use of real estate derivatives in 

Japan. This has also been accompanied by the publications by Japanese 

researchers interested in real estate derivatives. Moridaira (2006) proposed the 

pricing model of real estate index derivatives applying the Esscher Transform. 

However an empirical study about real estate derivatives based on the Japanese 

market has not yet been published. Thus one motivation for our paper is the 

need to fill this gap. The second motivating factor is the availability of data. 

Though the length of time is limited, not only real estate indices but also 

individual property data based on the J-REIT report have become available.  

 

Based on Japanese real estate data, we focus on the following three areas in 

this study. The first is to examine the modeling of real estate returns using a 

Wiener process or an autoregressive process. Another approach, the GARCH 
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model, is often applied to many financial products, for instance Baillie and Myers 

(1991) consider the optimal hedge for commodity futures based on GARCH 

model and they show that the estimated models provide a good description of 

the distribution of changes in commodity prices. Unfortunately we can’t apply 

GARCH in this study because of the restrictions of data. Our individual property 

data are initially semiannual and the maximum length is 5 years (see Section 3.1 

for details). This data set would be far too small to estimate a GARCH model. 

Park and Switzer (1995, 1996) apply a Wiener process to describe the process 

of returns but we doubt whether such diffusion process is appropriate for real 

estate returns. Thus we also apply an autoregressive process for the real estate 

index and the individual real estate returns, and we compare the standard error 

of estimates for both approaches. 

 

Our second focus is the hedging effectiveness of TRS. Park and Switzer (1995, 

1996) assessed the optimal position of real estate swaps for risk management 

for the real estate owner by transforming the problem into a mean-variance 

framework. We assess the hedging effectiveness of TRS in the same framework 

but while Park and Switzer (1995, 1996) determine the hedge ratio to maximize 

the investor’s utility function, we apply a minimum-variance hedging strategy 

(see Section 2.3 for details). Our analysis is based on the conditional variance 

and covariance for different specific periods, because the time period covered by 

each property differs, so properties that can be incorporated into the portfolio 

depend on the period selected. Harris and Stoja (2008) analyze both the 

unconditional minimum-variance hedge ratio and the conditional one for the 

currency market. They conclude that conditional minimum-variance hedge ratio 

does not perform significantly better than the unconditional one in terms of either 

hedge portfolio variance reduction, or utility maximization. 

 

The third and final focus of this study is the actual performance of the hedged 

portfolio. The investor is planning a hedging strategy based on the market 
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movement experienced. If the investor determines the hedge ratio expected to 

minimize the variance of return, we explore whether the actual performance in 

the succeeding period is better than the non-hedged portfolio. We use a fixed 

number of observations to estimate each model and performance assessment. 

The following period is used for the actual assessment (see Section 3.2 for 

details).  

 

Our study is based on some strong assumptions. As mentioned above, the 

spread of TRS would critically affect the performance of hedge. We assume a 

single period investment in this study. The investor and the counterparty make a 

contract of TRS for the period 1−t , and settle at time t  in this single period 

investment. We take the spread as fixed at the contract time 1−t , and the fixed 

spread is unchanged at settlement. Under this assumption, as the spread is not 

a stochastic variable, it does not affect the variance of return of portfolio. Of 

course the fixed spread still affects the return on the portfolio, but it just provides 

the same change to both the expected return and the actual return. Initially we 

set the spread equal to zero in the empirical analysis and the investment horizon 

for 6 months or 1 year.  

 

2. The Model 
2.1 Naked Portfolio and Hedged Portfolio 
The return of portfolio without hedging is given in equation (1). We call this, the  

naked portfolio. tiy ,  is the total return of the individual real estate i  at the 

period t  while iw  is the weight in the portfolio of the property i  under the 

constraint of 1=∑ iw . 

 

∑= tiitN ywR ,,        (1) 

 

The return of a portfolio hedged with TRS is given in equation (2). Fig.1 

expresses the exchanges of return of this hedged portfolio. The investor 
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contracts with the counterparty at the period 1−t  to swap the total return of the 

real estate index ( tI ) with LIBOR ( tr ) plus spread ( s ) at the period t . h  is the 

hedge ratio given as the ratio of the principle amount of swap to the exposure of 

real estate portfolio at the period 1−t . 

 

Real Estate Portfolio Investor Counterparty 

Real Estate Index 

LIBOR + spread 

Real Estate Earning 

 

Fig.1 Exchange flows of the hedged portfolio 

 

( )tttiitH IsrhywR −++= ∑ ,,       (2) 

 

 

2.2 Expectation and Variance of Returns 
We apply the autoregressive process for the returns of the real estate index and 

the individual real estate returns (see equation (3) and (4) respectively). The 

index is expressed as a simple autoregressive model with a constant term. The 

return of an individual property has two parts. One part depends on the index, 

and the other depends on the return at the previous period. In our model the 

degree of the dependence upon these two parts is expressed as a weight. That 

is to say the weight for the index is ia , and the weight for the previous return is 

the rest, i.e. ia−1 . The estimates of variance of tI ,ε  and ti,ε  are given with the 

residual of the estimation. Here ê  is the residual and k  is the number of 

samples. 

 

tIItIt cIaI ,1 ε++= −        (3) 

0][ , =tIE ε  

( )2/ˆ][
1

2
,, −= ∑

=

keV
k

j
jItIε  
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( ) tiitiititi cyaIay ,1,, 1 ε++−+= −      (4) 

0][ , =tiE ε  

( )2/ˆ][
1

2
,, −= ∑

=

keV
k

j
jitiε  

 

For the LIBOR process we apply the Vasicek model (Vasicek, 1977) as in  

equation (5) where tW  is a Wiener process and σ determines the volatility of 

the LIBOR rate. α  and β  express mean-reversion. βα /−  is the rate of long 

term, and β−  is the strength of mean-reversion. Simplifying the equation (5) 

we apply the equation (6) in this study. 

 

( ) tdWdtrdr σβα ++=       (5) 

 

( ) trttt trrr ,11 ε∆βα +++= −−      (6) 

Where 0][ , =trE ε  

tV tr ∆σε 2
, ][ =  

 

Given the information at 1−t  we can determine the conditional expected 

returns of portfolio at t  based on the above equations. Here 1−tΦ  is the 

information set at 1−t . Here we suppose that the spread ( s ) in the hedged 

portfolio is fixed at 1−t  and is paid at t . 

 

( )( )∑ ++−+= −−− iIitiitIiittN ccayaIaawRE 1,11, 1]|[ Φ    (7) 

 

( )( )∑ ++−+= −−− iIitiitIiittH ccayaIaawRE 1,11, 1]|[ Φ  

( )( )ItIt cIastrth −−++++ −− 111 ∆α∆β    

 (8) 

 

Based on the equations (1),(2),(3),(4) and (6) the conditional variance of return 

of portfolio are given in (9) and (10). Here we suppose that the covariance 
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between the error terms are negligibly low, i.e. 0],[ ,1 =− tItICov ε , 

0],[ ,1, =− tItiyCov ε , 0],[ ,1 =− titICov ε , 0],[ ,1, =− titiyCov ε , 0],[ ,, =titICov εε  and 

0],[ ,, =tqtpCov εε  for qp ≠ . As pointed out above, the spread ( s ) doesn’t have 

any effect to the variance of return because it isn’t a stochastic variable in this 

study. 
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Where: 
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2.3 Hedging Effectiveness 
The key issue for the investor is how to decide the hedge ratio, h  in the 

equation (2). Park and Switzer (1995, 1996) apply a mean-variance expected 

utility function, and they determine the optimal hedge ratio to maximize that utility 

function. Other various utility functions are introduced in studies, such as 

Cecchetti, Cumby, and Figlewski (1988). On the other hand, an alternative 

approach by Howard and D’Antonio (1984) proposes the maximization of the 

Sharpe ratio.  Boveroux and Minguet (1999) indicate that the choice of a hedge 

ratio that maximizes utility essentially corresponds to adjusting the portfolio’s 

beta. 

 

In this study we apply the minimum-variance hedging strategy derived by 

Johnson (1960). There is an argument about the appropriateness of the 

minimum-variance criterion as Alexander and Barbosa (2007) indicate. However 

our focus is on the demonstration of hedging effectiveness using individual 

property data, so the simple minimum-variance hedging is appropriate as an 

extreme case of reducing risk. As shown in equation (10),  the variance of 

return of the hedged portfolio is a function of the hedge ratio h . The hedge ratio 

to minimize ]|[ 1, −ttHRV Φ  is equation (11) and the minimum variance is given as 

equation (12). 

 

A
Bh −=         (11) 

C
A

BRV ttH +−=−

2

1, ]|[min Φ       (12) 
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The hedging effectiveness in this study means how much risk, i.e. variance of 

return, is reduced by hedging. In this sense the ratio of the variance of return of 

hedged portfolio to the naked portfolio is appropriate as the indicator of hedging 

effectiveness. The indicator of Johnson (1960) or Ederington (1979) is based on 

the same principle. The indicator of Alexander and Sheedy (2008) is the ratio of 

the standard deviation of returns, and it is consistent with these measures. We 

adopt the indicator of Alexander and Sheedy (2008) as in equation (13), 

because it is simple. 

 

1,

1,

|][

]|[

−

−=
ttN

ttH
t RV

RV
HE

Φ

Φ
       (13) 
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3. Model Estimation 
3.1 Index and Individual Property Data 
We used data supplied by the ARES (The Association for Real Estate 

Securitization in Japan). They provide individual properties data held in J-REITs 

and the real estate index collected from the reports of the settlement accounts of 

J-REITs. The index called the ARES J-REIT Property Index is an 

appraisal-based monthly index, and it is a simple mean of sample properties. 

The return of each property is calculated on the same basis as the NCREIF 

Property Index. Their index has been published from April 2006, and their index 

of office property covers the period from January 2002 until January 2007 at the 

end of November 2008. 

 

The individual property data provided by ARES is based on the information 

disclosed in the J-REIT report. As the settlement accounts of J-REIT is made 

semiannually, normally one record covers 6 months. This includes settlement 

date of the term, the attributes of the property, appraised value at the end of term, 

and income return at the term for each property and for each fiscal term. Their 

data includes 5,722 records for 1,537 properties at the end of September 2007. 

We used individual office properties that have more than 8 records, i.e. covering 

more than 4 years, in the Tokyo metropolitan area, excluding the properties that 

have additional acquisitions or errors  in their records. As a result, 746 records 

for 74 properties were applied in this analysis. 
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property A 

property B 

property C 

Feb 2003 

Dec 2002

May 2003

Aug 2003

Jun 2003

Nov 2003

Feb 2004

Dec 2003

May 2004 

Jun 2004 

property A 

property B 

property C 
May 2003 Nov 2003 May 2004 

applied to the analysisinterpolated data 

original data 

 

Fig.2 Interpolation for portfolio data 

As mentioned above the J-REIT report is published semiannually, the publication 

month of data may be vary one from other. So if we construct the portfolio with 

properties whose publication months are the same, we would select only a very 

restricted sample of properties. We therefore transform the observed return from 

the different months of data to a common point in time one by cubic spline 

interpolation like as Fig.2 for each portfolio. 
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Fig.3 real estate index and return of property 
 
* annualized rate of total return of 6 months investment. This doesn’t include 

interpolated data. The indicated range means plus/minus 1 standard deviation. 
** mean value of all samples with interpolated data 
 

Though the individual property data by ARES is available from 2002, sufficient 

samples are available only from 2004. Fig.3 shows the ARES total return index 

and the mean value of total return of the individual properties applied in this 

study. Since the J-REIT report is produced semiannually, only a few data of the 

individual properties are available for each month and in some periods that have 

no original data. The mean value of the total return of the individual properties is 

expressed on Figure 3 as a dot with the confidence interval of 1 standard 

deviation. Against this the mean values of interpolated data of properties are 

rather less volatile. The mean of our sample was lower than the index until 

March 2006 but thereafter was higher than the index. In two periods the 

difference was statistically significant. 

 

3.2 Estimation of Index Model and Property Model 
(1) Procedure 

Our analysis is done for two investment horizons, 6 months and 1year. For 6 

months investment, we use continuous 6 period observations for each 

estimation and actual assessment. The first 5 observations are use to estimate 

the model parameters ( Ia , Ic , ia , ic ) in equations (3)(4) and the variance and 

covariance in equations (7)(8) ( ][ 1−tIV , ],[ 1,1, −− tqtp yyCov , etc). The prediction of 

the model from the 5th observation is compared with the final observation for the 

actual assessment. The date of this 5th observation is called ‘period’ or ‘start date 

of investment’ in the following tables. If there are more than 7 observations for 

the chosen portfolio, we moved the window of 6 observations in the data 

coverage. 

 

The number of properties in the portfolio is set 1, 3, 5 and 10. The portfolios with 
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more than one property are constructed randomly. We create 1,000 sample 

portfolios by the Monte Carlo method with replacement with the weight of each 

property in the portfolio set equal. The hedge ratio is set to minimize the variance 

of the return of hedged portfolio as in equation (9), the spread ( s ) is set zero.  

 

(2) Auto-regressive vs. Wiener Process 

As mentioned above, Park and Switzer (1995, 1996) applied a Wiener process 

for real estate returns as in equation (14). yµ  is the mean drift of the change 

and yσ  is the volatilities. They assumed that yµ  and yσ  are constant. 

 

tyy dWdtdy σµ +=        (14) 

 

Here we compare the auto-regressive model that we applied in this study with 

the Wiener process model using the standard error of estimates. Table.1 shows 

the mean and standard deviation of the standard error of estimates of both 

models for each period. The mean value of the standard error of our 

auto-regressive model is always smaller than the Wiener process, and the 

standard deviation of the standard error of our model is also smaller than that for 

the Wiener process in almost all periods. So we conclude that an 

auto-regressive model is more appropriate for real estate return than a Wiener 

process model. 

 

Table.1 mean and standard deviation of standard error of estimates 

6 month investment 
   auto-regressive Wiener process 
period properties* mean std mean std 
Feb05 22 0.0377 0.0330 0.0546 0.0546  
Mar05 16 0.0405 0.0399 0.0601 0.0579  
Jun05 19 0.0291 0.0185 0.0441 0.0283  
Aug05 22 0.0284 0.0176 0.0469 0.0323  
Sep05 19 0.0308 0.0240 0.0448 0.0372  
Oct05 9 0.0269 0.0135 0.0346 0.0107  
Dec05 19 0.0314 0.0231 0.0457 0.0233  
Feb06 22 0.0296 0.0158 0.0367 0.0178  



18 / 43 

Mar06 18 0.0230 0.0088 0.0333 0.0197  
Apr06 9 0.0265 0.0181 0.0347 0.0124  
Jun06 20 0.0363 0.0267 0.0464 0.0295  

1 year investment 
   auto-regressive Wiener process 

period properties* mean std mean std 
Aug05 20 0.0307 0.0251 0.0551 0.0454  
Sep05 14 0.0325 0.0259 0.0549 0.0500  
Dec05 18 0.0495 0.0398 0.0752 0.0506  

* Interpolated samples are NOT included 

 

(3) Summary of the model of the index and properties 

The models of the real estate index and properties are estimated by OLS. 

Table.2 shows the estimates of the index model of the equation (3). The 

estimates of Ia  are highly significant and the standard errors of estimates are 

quite small until the period of Oct05 for 6 months investment. The estimates of 

Ic  are less significant for almost all periods. Though the significance of Ia  after 

the period of Dec05 is less, the t-statistic is still greater than 2.. For 1 year 

investment the standard error is a little higher. 

 

For the property model, the significance varies across  properties and periods. 

Of course there are some insignificant cases, but we do not eliminate  

insignificant cases in this study, because investors cannot select the property in 

their portfolio based on statistical significance. In practice the investor has to 

prepare the hedging strategy for the portfolio actually owned. As we assume 

such a practical situation in order to consider hedging effectiveness, all 

properties are used for analysis regardless of its significance. 

Table.3 shows the mean value of the estimates and statistics of the property 

model. For 6 months investment the mean of t-statistic of ia  is about or greater 

than 2, and the mean of t-statistic of ic  is more than 1. The mean of t-statistic of 

1-year investment is better. Considering the uniqueness of each individual 

property we can say the significance of this model is acceptable. 
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Table.2 estimates of the index model 

6 month investment 
  estimates t-statistic Probability  

period Ia  Ic  Ia  Ic  Ia  Ic  s.e.* 
Feb05 1.6916 -0.0080 12.5776 -2.3951 0.0063 0.1389 0.0018 
Mar05 1.5612 -0.0051 8.6414 -1.0965 0.0131 0.3873 0.0025 
Jun05 1.1511 0.0070 9.7406 1.9917 0.0104 0.1846 0.0027 
Aug05 1.6761 -0.0078 21.1440 -2.8488 0.0022 0.1043 0.0018 
Sep05 1.7590 -0.0109 20.4919 -3.6342 0.0024 0.0681 0.0019 
Oct05 1.5278 -0.0050 14.2148 -1.1759 0.0049 0.3607 0.0028 
Dec05 1.4028 -0.0006 9.5563 -0.0994 0.0108 0.9299 0.0040 
Feb06 0.9098 0.0180 3.0637 1.2001 0.0921 0.3530 0.0115 
Mar06 0.8516 0.0202 2.5354 1.1713 0.1267 0.3621 0.0131 
Apr06 0.6769 0.0282 2.0193 1.5217 0.1809 0.2675 0.0135 
Jun06 0.6540 0.0302 2.0850 1.6944 0.1724 0.2323 0.0120 

1 year investment 
  estimates t-statistic Probability  

period Ia  Ic  Ia  Ic  Ia  Ic  s.e.* 
Aug05 1.5152 0.0225 2.9228 0.6288 0.0998 0.5937 0.0238 
Sep05 1.4998 0.0217 2.5231 0.5210 0.1277 0.6543 0.0264 
Dec05 0.9949 0.0536 2.7282 1.8000 0.1122 0.2137 0.0196 

* s.e.: standard error of estimates 
 

Table.3 summary of estimates of the property model 
6 month investment 

   
mean of 

estimates 
mean of 

t-statistic** 
mean of 

probability 
mean 

of 

period properties
* ia  ic  ia  ic  ia  ic  s.e.*** 

Feb0
5 52 

0.950
4 -0.0120 1.9262 0.9969 0.3076 0.5410 0.0363 

Mar0
5 55 

0.963
9 -0.0112 1.9614 1.0349 0.2971 0.5251 0.0353 

Jun05 57 
0.905

3 -0.0090 2.3979 1.2834 0.2691 0.5080 0.0298 
Aug0

5 51 
0.929

0 -0.0149 2.3604 1.0295 0.2642 0.5499 0.0301 
Sep0

5 57 
0.951

9 -0.0126 2.5741 1.0951 0.2684 0.5440 0.0277 

Oct05 64 
0.949

2 -0.0134 2.5890 1.2604 0.2620 0.4992 0.0250 
Dec0

5 65 
0.741

5 -0.0045 2.1258 1.1147 0.3319 0.5214 0.0260 
Feb0

6 67 
0.838

9 -0.0065 2.5124 1.5305 0.3383 0.4824 0.0266 
Mar0

6 67 
0.775

4 -0.0051 1.9746 1.1638 0.3352 0.5068 0.0270 

Apr06 62 
0.739

7 -0.0026 1.9722 1.2754 0.3580 0.4795 0.0271 
Jun06 67 0.738 -0.0001 1.9325 1.2395 0.3305 0.4825 0.0264 
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1 
1 year investment 

   
mean of 

estimates 
mean of 

t-statistic** 
mean of 

probability 
mean 

of 

period properties
* ia  ic  ia  ic  ia  ic  s.e.*** 

Aug0
5 47 

0.866
1 -0.0445 3.1205 2.0543 0.2391 0.3751 0.0344 

Sep0
5 49 

0.831
1 -0.0399 3.2011 2.2963 0.2688 0.3800 0.0342 

Dec0
5 50 

0.695
9 -0.0201 4.9213 2.8498 0.3165 0.3938 0.0371 

* Interpolated samples are included.  ** mean of absolute value of t-statistic  *** s.e.: 
standard error of estimates 
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3.3 Estimation of LIBOR Model 
We estimated the parameters α , β  and σ  in the equation (6) by GMM 

(Generalized Method of Moments, Hansen, 1982) under the following orthogonal 

conditions. 

 

0][ , =trE ε  

0][ , =ttr rE ε  

0][ 22
, =− tE tr ∆σε  

( ) 0][ 22
, =− ttr rtE ∆σε        (15) 

 

We applied 10 years (from Oct 1997 to Oct 2007) monthly data for annualized 6 

months LIBOR and 1 year LIBOR. The results of the estimation are as Table.4, 

and both estimations are significant for all parameters. Calculating βα /−  the 

long term rate of 6 months LIBOR is 4.895%, and the 1-year LIBOR is 4.887%. 

The mean values of sample data are 5.222% and 5.335% respectively. Though 

mean-reverting rates are slightly smaller than the arithmetic mean values of 

sample data, both of them are very close. 

 

Table.4 Estimation of LIBOR model 

    α  β  σ  
Estimate 0.011709 -0.239205 0.002789 
Error 0.003546 0.064254 0.000160 6mth 

LIBOR t-statistic 3.302220 -3.722800 17.403700 
Estimate 0.018557 -0.379727 0.003705 
Error 0.004898 0.085942 0.000204 1y LIBOR 
t-statistic 3.788600 -4.418400 18.198100 
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4. Model Based Hedging Effectiveness 
4.1 Variance of Return 
The variances of return of the portfolio, ]|[ 1, −ttNRV Φ  and ]|[ 1, −ttHRV Φ , are 

calculated for each period by the equations (9) and (10) respectively. Table.5 

shows the mean and the standard deviation of the square root of the variance of 

return of each portfolio for each period, and Fig.4 shows the probability 

distribution of square root of the variance of return. As n , the number of 

properties in the portfolio, becomes greater, the mean of the variance of return 

becomes smaller for any period. The standard deviation of the variance of return 

also becomes to be smaller when n  becomes greater. And the distribution of 

the variance of return of 1=n  fluctuates heavily depending on the period, but 

the increase of n  make the fluctuation moderate as shown in Fig.4. Especially 

for the hedged portfolio of 10=n , there is little fluctuation through the whole 

period. The diversification effects of the portfolio are obvious. 

 

Comparing the naked portfolio and the hedged portfolio in Table.5, the mean of 

the variance of return of the hedged portfolio is always smaller than the naked 

portfolio for any n . On the other hand the standard deviation of the variance of 

return of the hedged portfolio isn’t always smaller than the naked portfolio 

especially for 1=n  or 3=n . But there is a tendency for the standard deviation 

of the hedged portfolio to be smaller than the naked portfolio when n  increases. 

As shown in Fig.4, the peak of distribution of the hedged portfolio is located 

slightly lower than the naked portfolio. 

 

Comparing the 6 months investment and the 1 year investment in Table.5, the 

mean of the variance of return of the 1 year investment is smaller than the 6 

months investment except December 2005 and the hedged portfolio of 10=n . 

Since there are a few results for the 1 year investment, it is difficult to find the 

consistent tendency about the mean of the variance of return between the 6 

months investment and the 1 year investment. But with a few exceptions, the 
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standard deviation of the variance of return of the 1 year investment is generally 

greater than the 6 months investment. 

 



24 / 43 

 

Table.5 mean and standard deviation of variance of return* 

6 month investment 
  n=1 n=3 n=5 n=10 

period naked hedge naked hedge naked hedge naked hedge 
0.0918 0.0792  0.0660 0.0525 0.0526 0.0384  0.0451 0.0299 Feb05 ( 0.0665 ) ( 0.0692 ) ( 0.0253 ) ( 0.0283 ) ( 0.0157 ) ( 0.0166 ) ( 0.0102 ) ( 0.0101 )
0.0989 0.0848  0.0658 0.0532 0.0532 0.0404  0.0460 0.0308 Mar05 ( 0.0722 ) ( 0.0789 ) ( 0.0244 ) ( 0.0281 ) ( 0.0138 ) ( 0.0146 ) ( 0.0110 ) ( 0.0122 )
0.0787 0.0651  0.0553 0.0407 0.0467 0.0329  0.0406 0.0246 Jun05 ( 0.0388 ) ( 0.0344 ) ( 0.0210 ) ( 0.0191 ) ( 0.0152 ) ( 0.0139 ) ( 0.0071 ) ( 0.0068 )
0.0863 0.0608  0.0740 0.0428 0.0660 0.0326  0.0621 0.0237 Aug05 ( 0.0384 ) ( 0.0368 ) ( 0.0213 ) ( 0.0176 ) ( 0.0155 ) ( 0.0110 ) ( 0.0119 ) ( 0.0051 )
0.1013 0.0686  0.0757 0.0416 0.0669 0.0329  0.0627 0.0245 Sep05 ( 0.0515 ) ( 0.0518 ) ( 0.0203 ) ( 0.0181 ) ( 0.0150 ) ( 0.0103 ) ( 0.0099 ) ( 0.0060 )
0.0865 0.0561  0.0655 0.0378 0.0583 0.0300  0.0517 0.0229 Oct05 ( 0.0172 ) ( 0.0260 ) ( 0.0130 ) ( 0.0154 ) ( 0.0107 ) ( 0.0099 ) ( 0.0088 ) ( 0.0059 )
0.1049 0.0748  0.0727 0.0504 0.0586 0.0377  0.0514 0.0254 Dec05 ( 0.0635 ) ( 0.0586 ) ( 0.0188 ) ( 0.0221 ) ( 0.0153 ) ( 0.0151 ) ( 0.0088 ) ( 0.0065 )
0.0746 0.0681  0.0545 0.0437 0.0495 0.0368  0.0448 0.0297 Feb06 ( 0.0293 ) ( 0.0301 ) ( 0.0129 ) ( 0.0119 ) ( 0.0086 ) ( 0.0072 ) ( 0.0070 ) ( 0.0043 )
0.0654 0.0594  0.0496 0.0421 0.0440 0.0356  0.0393 0.0291 Mar06 ( 0.0186 ) ( 0.0189 ) ( 0.0104 ) ( 0.0095 ) ( 0.0072 ) ( 0.0062 ) ( 0.0057 ) ( 0.0038 )
0.0843 0.0761  0.0551 0.0486 0.0473 0.0408  0.0400 0.0332 Apr06 ( 0.0442 ) ( 0.0397 ) ( 0.0160 ) ( 0.0145 ) ( 0.0113 ) ( 0.0097 ) ( 0.0070 ) ( 0.0056 )
0.0991 0.0943  0.0586 0.0541 0.0484 0.0432  0.0407 0.0341 Jun06 ( 0.0487 ) ( 0.0481 ) ( 0.0183 ) ( 0.0173 ) ( 0.0140 ) ( 0.0124 ) ( 0.0106 ) ( 0.0085 )

1 year investment 
  n=1 n=3 n=5 n=10 

Period naked hedge naked hedge naked hedge naked hedge 
0.0768 0.0508  0.0652 0.0369 0.0637 0.0320  0.0617 0.0269 Aug05 ( 0.0776 ) ( 0.0485 ) ( 0.0309 ) ( 0.0162 ) ( 0.0248 ) ( 0.0117 ) ( 0.0176 ) ( 0.0076 )
0.0708 0.0520  0.0646 0.0390 0.0628 0.0336  0.0587 0.0279 Sep05 ( 0.0344 ) ( 0.0300 ) ( 0.0251 ) ( 0.0154 ) ( 0.0227 ) ( 0.0118 ) ( 0.0179 ) ( 0.0081 )
0.0949 0.0732  0.0868 0.0589 0.0725 0.0459  0.0583 0.0336 Dec05 ( 0.0838 ) ( 0.0653 ) ( 0.0514 ) ( 0.0343 ) ( 0.0332 ) ( 0.0206 ) ( 0.0203 ) ( 0.0118 )

 
* These numbers are the mean and the standard deviation of square root of the 

variance of return. The return is annualized for each investment horizon. 
** Upper cell is mean and bracketed lower cell is standard deviation 
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  n=10, Naked    n=10, Hedge 

Fig.4 Probability distribution of variance of return (6 months investment) 
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4.2 Hedging Effectiveness 
The hedging effectiveness in this study is defined as the ratio of square root of 

the variance of return of the hedged portfolio to the naked portfolio as the 

equation (13). So the smaller number indicates the greater hedging 

effectiveness. Table.6 shows the mean and the standard deviation of hedging 

effectiveness. The hedging effectiveness differs considerably between the 

periods. For 1=n , the best is 0.6276 on October 2005, and the worst is 0.9463 

on June 2006. For 10=n , the best is 0.3906 on August 2005, and the worst is 

0.8419 on June 2006. This latter best case is the best of all, and the standard 

deviation of return of the hedged portfolio is 39% of the naked portfolio in this 

case. 

 

Table.6 mean and standard deviation of hedging effectiveness 

6 month investment 
period n=1 n=3 n=5 n=10 

0.8211 0.7693 0.7204 0.6595  Feb05 ( 0.1285 ) ( 0.1474 ) ( 0.1436 ) ( 0.1328 ) 
0.7577 0.7704 0.7495 0.6541  Mar05 ( 0.2189 ) ( 0.1561 ) ( 0.1200 ) ( 0.1236 ) 
0.8246 0.7375 0.7022 0.6000  Jun05 ( 0.1956 ) ( 0.1573 ) ( 0.1315 ) ( 0.0927 ) 
0.6887 0.5815 0.4998 0.3906  Aug05 ( 0.1661 ) ( 0.1658 ) ( 0.1377 ) ( 0.0978 ) 
0.6361 0.5455 0.4997 0.3939  Sep05 ( 0.2203 ) ( 0.1765 ) ( 0.1369 ) ( 0.0945 ) 
0.6276 0.5694 0.5244 0.4593  Oct05 ( 0.1939 ) ( 0.1674 ) ( 0.1754 ) ( 0.1607 ) 
0.6654 0.6749 0.6473 0.5083  Dec05 ( 0.1936 ) ( 0.1786 ) ( 0.1902 ) ( 0.1701 ) 
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0.8996 0.7991 0.7436 0.6656  Feb06 ( 0.0782 ) ( 0.0826 ) ( 0.0749 ) ( 0.0534 ) 
0.9012 0.8480 0.8089 0.7441  Mar06 ( 0.0680 ) ( 0.0686 ) ( 0.0628 ) ( 0.0499 ) 
0.9086 0.8815 0.8638 0.8324  Apr06 ( 0.0752 ) ( 0.0540 ) ( 0.0489 ) ( 0.0338 ) 
0.9463 0.9236 0.8959 0.8419  Jun06 ( 0.0552 ) ( 0.0529 ) ( 0.0460 ) ( 0.0411 ) 

1 year investment 
period n=1 n=3 n=5 n=10 

0.6908 0.5902 0.5186 0.4386  Aug05 ( 0.1816 ) ( 0.1418 ) ( 0.1098 ) ( 0.0418 ) 
0.7303 0.6120 0.5452 0.4819  Sep05 ( 0.1595 ) ( 0.1288 ) ( 0.0967 ) ( 0.0601 ) 
0.7367 0.6813 0.6390 0.5795  Dec05 ( 0.1477 ) ( 0.1000 ) ( 0.0842 ) ( 0.0605 ) 

 

 

As shown in Table.6, when n  becomes greater, the mean of hedging 

effectiveness becomes higher for any period. And though there are a few 

exceptions, the standard deviation of returns is smaller for the portfolio with 

greater number of properties. So we can find the diversification effect also 

impacts the hedging effectiveness  

 

Comparing the 6 months investment and the 1 year investment, the mean of 

hedging effectiveness of the 1 year investment is lower than the 1year 

investment. The standard deviation of the 1 year investment is smaller than the 6 

months investment with only one exception ( 1=n  on August 2005). 

 

Fig.5 is the probability distribution of the 6 months investment’s hedging 

effectiveness. There is a break in the hedging effectiveness between June and 

August 2005. The hedging effectiveness becomes lower after that gradually. 

This tendency becomes obvious when n  increases. We consider the cause of 

this movement in the next section. 

 
  n=1     n=3 
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Fig.5 Probability distribution of hedging effectiveness (6 months investment) 

 

4.3 Determinant of Hedging Effectiveness 
The variance of return of the hedged portfolio, a minimum-variance portfolio, is 

given in equation (12). That is to say the reduction in variance of return depends 

on the parameters A  and B  given in equation (10). The parameter A  

depends on ][ tIV  (variance of index), ][ trV  (variance of LIBOR) and 

],[ tt rICov  (covariance of index and LIBOR). The parameter B  depends on 

],[ ,∑ ttii rywCov  (covariance of property returns and LIBOR) and 

],[ ,∑ ttii IywCov  (covariance of property returns and index). Fig.6 shows the 

fluctuation of these factors and the hedging effectiveness for each number of 

properties in the portfolio. 

 
  n=1     n=3 
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  n=5     n=10 
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Fig.6 Hedging Effectiveness Factors 

 
* Since the values of ][ trV , ],[ tt rICov  and ],[ ,∑ ttii rywCov  are considerably 

smaller than the others, their values are multiplied by a factor of 10 when presented 
in this figure. 

 

 

Table.7 regressions for hedging effectiveness 

6 months investment 
  n=1 n=3 n=5 n=10 

R square 0.3960  0.611634 0.7357  0.8461  
s.e. 0.1433  0.1151  0.0970  0.0752  

F-statistics 29.9672** 680.3517** 1035.2900** 1575.6210** 
samples 234  2165  1865  1438  

1.1087  1.3391  1.4660  1.8045  constant ( 8.4576 )** ( 21.4794 )** ( 21.8457 )** ( 25.5834 )** 
-20034.1162 -73351.3526 -102868.7962 -179288.1786 ][ trV  ( -0.8756 ) ( -6.1859 )** ( -7.8745 )** ( -12.8591 )**

][ tIV  
-202.1544  -149.8692  -119.8846  -116.5907  
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( -3.8210 )** ( -7.4822 )** ( -6.1557 )** ( -5.8988 )** 
581.2318  6611.0867 8547.6393  13081.2486 ],[ tt rICov  ( 0.2265 ) ( 5.0011 )** ( 5.8429 )** ( 8.0137 )** 
-290.3318  601.5796  1889.1773  6285.1488  ],[ ,∑ ttii rywCov  ( -0.4508 ) ( 1.7879 )* ( 4.3946 )** ( 9.1533 )** 
-108.8612  -325.7864  -464.9742  -642.8434  ],[ ,∑ ttii IywCov  ( -4.2984 )** ( -26.0386 )** ( -33.8721 )** ( -40.0975 )**

1 year investment 
  n=1 n=3 n=5 n=10 

R square 0.340012 0.493274 0.469299 0.6100  
s.e. 0.1772  0.1172  0.0902  0.0504  

F-statistics 8.7581  219.0266  182.3430  312.2680  
samples 90  1130  1036  1002  

2.3082  2.9817  3.1178  2.8656  constant ( 2.7523 )** ( 15.2103 )** ( 14.1333 )** ( 7.0952 )** 
-97076.4518 -146973.3900 -161591.1377 -150814.8913 ][ trV  ( -1.8583 )* ( -11.7811 )** ( -11.0017 )** ( -5.5142 )** 

-21.9104  -3.5337  1.5756  -4.1332  ][ tIV  ( -1.4507 ) ( -0.9510 ) ( 0.4504 ) ( -1.5556 ) 
6171.4083 7694.2281  7839.7982  6905.9100  ],[ tt rICov  ( 1.7759 )* ( 9.6275 )** ( 9.2574 )** ( 4.2585 )** 
-367.1686  -202.9320  -102.4349  -17.5641  ],[ ,∑ ttii rywCov  ( -1.0294 ) ( -1.1917 ) ( -0.4895 ) ( -0.0821 ) 
-19.1259  -33.2805  -30.2912  -16.6237  ],[ ,∑ ttii IywCov  ( -3.7217 )** ( -20.5320 )** ( -17.8646 )** ( -10.9040 )**

#  lower bracketed cell is t-statistics of estimate 
** 1% significant 
* 10% significant 
 

As shown Fig.6 the fluctuations of ][ tIV  and ],[ ,∑ ttii IywCov  are relatively 

larger than the others, the hedging effectiveness moves in inverse proportion to 

them. In order to determine the relative importance of these variables we 

estimate the regression model with these 5 factors as independent values. This 

result is shown in Table.7. 

 

Concerning the level of the independent values and coefficients, the major 

determinants of hedging effectiveness are ][ tIV  and ],[ ,∑ ttii IywCov . 

Observing the equation (12) the increase of A  operates to reduce the hedging 

effectiveness, and the increase of B  improves the hedging effectiveness. 

Though the increase of ],[ ,∑ ttii IywCov  decreases B , since B  normally 

takes negative value, the absolute value of B  becomes large with the increase 



31 / 43 

of ],[ ,∑ ttii IywCov . It means that the increase of ],[ ,∑ ttii IywCov  improves the 

hedging effectiveness. So it is appropriate that the coefficient of ],[ ,∑ ttii IywCov  

takes negative value. On the other hand it should be strange that the coefficient 

of ][ tIV  takes negative value. Because the increase of ][ tIV  increases A , the 

increase of A  lowers the hedging effectiveness. But in the case of this study, as 

the changes in ][ tIV  and ],[ ,∑ ttii IywCov  are almost the same shown in Fig.6, 

it is inevitable that those two coefficients take same direction as a result of 

regression. Nevertheless the weight of ],[ ,∑ ttii IywCov  is much larger than 

][ tIV  except the case of 1=n , so we can say that the hedging effectiveness is 

mainly defined by ],[ ,∑ ttii IywCov . The break in the hedging effectiveness 

between June 2005 and August 2005 is brought about by the rapid increases in 

the covariance of property returns and index. The decline of the covariance after 

that reduces the hedging effectiveness. 

 

Thus the covariance of property returns and index is the main factor, and it is 

highly volatile as shown in Fig.6. This means that the basis risk of hedging with 

TRS is very high, and the hedging effectiveness varies depending on the period. 

The mean of the covariance of property returns and index does not change as 

much even if n  increases. But the weight of the coefficient in the regression 

becomes heavier with the increase of n  as shown in Table.7. This is because 

the covariance of property returns and index tends to concentrate around the 

mean value with the increase of n . Fig.7 shows the dispersion of the covariance 

of property returns and index and the hedging effectiveness on September 2005. 

In the case of 1=n  or 3=n , there are some portfolios that take extreme 

covariance. But in the case of 10=n , there is no such portfolio, and the 

covariance and the hedging effectiveness concentrate on the center. This means 

that the reason of improvement of hedging effectiveness with the increase of the 

number of properties in portfolio is not the rise of the average covariance but the 

convergence to the average covariance. 
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Fig.7 Covariance and Hedging Effectiveness 
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5. Actual Assessment of Hedging Effectiveness 
5.1 Actual Performance Score 
Though the model is estimated with historical data in the past, investors want to 

discover whether they can actually get the expected hedging effectiveness 

based on the estimated model. Since the term length covered by the data of this 

study is relatively short long, we do not have enough data to calculate the 

variance of returns ex post.. Then we devise the following indicator to assess the 

actual hedging effectiveness with one period data. 

 

As mentioned before we use 6 periods data for each calculation. The first 5 

periods are used to estimate the model, and the last period is used for the actual 

assessment. Our indicator expressed in the equations (13) and (14) is similar to 

the Sharpe ratio. This indicator is the ratio of the difference between the actual 

return on the last period and the expected return predicted by the model to the 

square root of the variance of return predicted by the model. This indicator 

represents the actual excess return for the risk the investor expect to take. We 

call this indicator the actual performance score. 

 

][
][ˆ

,

1,1,
,

tN

tNtN
tN RV

RER
S ++ −

=       (13) 

][
][ˆ

,

1,1,
,

tH

tHtH
tH RV

RER
S ++ −

=       (14) 

Where: 

1,
ˆ

+tNR : actual return of the naked portfolio from t  to 1+t  

1,
ˆ

+tHR : actual return of the hedged portfolio from t  to 1+t  

][ 1, +tNRE : expected return of the naked portfolio at 1+t  predicted at t  

][ 1, +tHRE : expected return of the hedged portfolio at 1+t  predicted at t  
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5.2 Summary of Score 
Table.8 shows the mean and the standard deviation of the actual performance 

score for each portfolio and for each period. It shows the probability distribution 

of the actual performance score of the 6 months investment. Though the mean 

score of the hedged portfolio is better than the naked from August 2005 until 

April 2006 (except April 2006 of n=10) as shown in the shadowed cell in Table.8, 

the standard deviation of the hedged portfolio is always larger than the naked 

portfolio,  and the range of distribution of the hedged portfolio is always wider 

than the naked portfolio as shown in Fig.8. This means that the difference 

between actual return and expected return of the hedged portfolio doesn’t 

always correspond to the risk the investor expects to take compared with the 

naked portfolio. 

 

Table.8 mean and standard deviation of actual performance score 

6 month investment 
start n=1 n=3 n=5 n=10 
date 1-naked 1-hedge 3-naked 3-hedge 5-naked 5-hedge 10-naked 10-hedge

-0.6864 -1.0395  -0.4412 -0.8717 -0.4117 -0.9125  -0.4572 -1.0832 Feb05 ( 1.2122 ) ( 1.6250 ) ( 0.8999 ) ( 1.3291 ) ( 0.8348 ) ( 1.3137 ) ( 0.6300 ) ( 1.2251 )
-0.3366 -1.1418  -0.0514 -0.5590 -0.1735 -0.7540  -0.2932 -1.1372 Mar05 ( 1.0090 ) ( 2.2930 ) ( 0.8600 ) ( 1.1822 ) ( 0.7505 ) ( 1.1222 ) ( 0.6182 ) ( 1.1218 )
1.1830 0.8061  1.0365 0.6183 0.8892 0.4249  0.6221 0.0007 Jun05 ( 2.3420 ) ( 3.4105 ) ( 1.6412 ) ( 2.6447 ) ( 1.3977 ) ( 2.2744 ) ( 0.9671 ) ( 1.8064 )
-1.0909 -0.8055  -0.7256 0.0600 -0.6365 0.4612  -0.9408 -0.0717 Aug05 ( 1.2316 ) ( 1.6307 ) ( 0.9772 ) ( 1.3448 ) ( 0.7838 ) ( 1.4086 ) ( 0.6144 ) ( 1.3447 )
-0.7315 -0.0720  -0.9357 -0.0838 -0.8572 0.2097  -0.8073 0.7225 Sep05 ( 1.4471 ) ( 2.1840 ) ( 0.7955 ) ( 1.4214 ) ( 0.7462 ) ( 1.2657 ) ( 0.4738 ) ( 1.1294 )
-0.1856 1.3283  -0.2265 1.3574 -0.1837 1.6111  -0.1431 2.0604 Oct05 ( 1.0858 ) ( 1.9985 ) ( 0.9821 ) ( 1.4894 ) ( 0.9353 ) ( 1.2998 ) ( 0.8448 ) ( 1.1968 )
0.0882 1.0334  0.1767 1.2518 0.1567 1.3369  -0.0224 1.8130 Dec05 ( 1.4338 ) ( 2.3145 ) ( 1.1606 ) ( 1.1832 ) ( 1.1245 ) ( 1.1069 ) ( 0.9118 ) ( 1.1667 )
0.2166 0.5966  0.1171 0.6577 0.0152 0.6477  -0.0107 0.7803 Feb06 ( 1.2728 ) ( 1.4878 ) ( 0.9175 ) ( 1.1242 ) ( 0.7840 ) ( 1.0378 ) ( 0.6248 ) ( 0.9165 )
-0.3156 -0.1722  -0.1563 0.0816 -0.0488 0.2689  0.0703 0.5070 Mar06 ( 1.1293 ) ( 1.2419 ) ( 0.9591 ) ( 1.0973 ) ( 0.8535 ) ( 1.0307 ) ( 0.7058 ) ( 0.9049 )
0.1925 0.2061  -0.0567 -0.0462 -0.1160 -0.1084  -0.2175 -0.2244 Apr06 ( 0.9217 ) ( 1.0396 ) ( 0.7323 ) ( 0.8358 ) ( 0.6636 ) ( 0.7668 ) ( 0.5204 ) ( 0.6236 )
-0.3156 -0.4030  0.2953 0.2467 0.2632 0.2329  -0.0451 -0.1194 Jun06 ( 1.2869 ) ( 1.3709 ) ( 1.3337 ) ( 1.4437 ) ( 1.1172 ) ( 1.2272 ) ( 0.8147 ) ( 0.9567 )
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1 year investment 
start n=1 n=3 n=5 n=10 
date naked hedge naked hedge naked hedge naked hedge 

-0.3060 0.6622  -0.4545 1.0837 -0.5724 1.2178  -0.6976 1.3778 Aug05 ( 1.2794 ) ( 1.3254 ) ( 0.8201 ) ( 0.9929 ) ( 0.6487 ) ( 0.9617 ) ( 0.4180 ) ( 0.8952 )
-0.4538 0.4062  -0.5944 0.7860 -0.7114 0.8473  -0.7593 1.0298 Sep05 ( 1.4850 ) ( 1.5383 ) ( 0.7425 ) ( 0.9313 ) ( 0.6409 ) ( 0.9460 ) ( 0.4870 ) ( 0.8924 )
-0.4547 0.4217  -0.7159 0.2483 -0.7188 0.3530  -0.6833 0.5811 Dec05 ( 0.8231 ) ( 0.9820 ) ( 0.6806 ) ( 0.8275 ) ( 0.6692 ) ( 0.8761 ) ( 0.5788 ) ( 0.8581 )

 



36 / 43 

  n=1, Naked    n=1, Hedge 

start date of investment

ac
tu

al
 p

er
fo

rm
an

ce
 s

co
re

 

 

probability

Feb05 Mar05 Jun05 Aug05 Sep05 Oct05 Dec05 Feb06 Mar06 Apr06 Jun06
- 3

- 2

- 1

0

1

2

3

4

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

start date of investment

ac
tu

al
 p

er
fo

rm
an

ce
 s

co
re

 

 

probability

Feb05 Mar05 Jun05 Aug05 Sep05 Oct05 Dec05 Feb06 Mar06 Apr06 Jun06
- 3

- 2

- 1

0

1

2

3

4

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 
  n=3, Naked    n=3, Hedge 

start date of investment

ac
tu

al
 p

er
fo

rm
an

ce
 s

co
re

 

 

probability

Feb05 Mar05 Jun05 Aug05 Sep05 Oct05 Dec05 Feb06 Mar06 Apr06 Jun06
- 3

- 2

- 1

0

1

2

3

4

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

start date of investment

ac
tu

al
 p

er
fo

rm
an

ce
 s

co
re

 

 

probability

Feb05 Mar05 Jun05 Aug05 Sep05 Oct05 Dec05 Feb06 Mar06 Apr06 Jun06
- 3

- 2

- 1

0

1

2

3

4

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 
  n=5, Naked    n=5, Hedge 

start date of investment

ac
tu

al
 p

er
fo

rm
an

ce
 s

co
re

 

 

probability

Feb05 Mar05 Jun05 Aug05 Sep05 Oct05 Dec05 Feb06 Mar06 Apr06 Jun06
- 3

- 2

- 1

0

1

2

3

4

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

start date of investment

ac
tu

al
 p

er
fo

rm
an

ce
 s

co
re

 

 

probability

Feb05 Mar05 Jun05 Aug05 Sep05 Oct05 Dec05 Feb06 Mar06 Apr06 Jun06
- 3

- 2

- 1

0

1

2

3

4

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 
  n=10, Naked    n=10, Hedge 
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5.3 Prediction Error and Actual Performance 
As shown the equations (7) and (8) the expected return depend on 1−tI Ia . That 

is to say the difference between actual return and expected return depends on 

the prediction of tI . Fig.3 in Section 3.1 shows that there is a break in the index 

process between June and July 2005. This should affect the estimated model of 

index and the accuracy of the prediction. 

 

Fig.9 shows the index prediction and the actual performance score. The index is 

overestimated after August 2005 as the start date of investment because the 

break is included to the terms of model estimation. For LIBOR there is no such 

difference between the actual value and the prediction. The difference between 

the actual index and the predicted index is largest at August 2005 as the start 

date of investment, and it becomes smaller gradually to June 2006. As the 

overestimation of the index means that the actual return would be smaller than 

the prediction, the actual performance score becomes smaller by the 

overestimation. Actually the score of naked portfolio sharply falls at August 2005, 

and afterwards recovers. The score of the hedged portfolio also falls in August, 

but its degree is smaller than the naked portfolio and the recovery after is quite 

large. Since the hedged portfolio pays the index, the overestimation of index 

means that the actual payment of the index should be smaller than the 

expectation. This is the reason why the mean score of the hedged portfolio is 

better than the naked from August 2005 until April 2006. 

Fig.8 Probability distribution of actual performance score (6 months investment) 
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This effect of the overestimation of index seems to fade away from around 

December 2005 for the naked portfolio. This is because the correlation of the 

individual property to the index, i.e. ia , declines after December 2005 as shown 

in Table.3 in Section 3.2. For the hedged portfolio the overestimation effect lasts 

until around March 2006. As the hedged portfolio has the index payment, the 

effect is greater for it than for the naked portfolio. 

 

Needless to say, the appropriateness of the model also affects the actual 

performance. As the return of portfolio critically depends on the prediction of the 

index, the prediction error includes the difference between the actual return and 

the expectation compared with the expected risk that investor take. One extreme 

change tends to make an enormous impact on the estimation of the model, 

because the model is estimated with a few observations in this study. But from 

the other point of view, the quality of the index is also a critical factor to affect to 

the actual performance. As mentioned in Section 3.1, the index applied in this 

study is a simple mean of about 200 properties. The break between June and 

July 2005 would certainly reflect the real change but there might be some doubt 

whether that sudden change typifies the whole market change. 
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  n=5     n=10 
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Fig.9 index prediction and performance score 
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6. Conclusions 
Applying the real estate index and the individual property data in Japanese 

market, we develop a model for the real estate portfolio hedged with TRS, and 

assess the hedging effectiveness. We assess the actual performance if investors 

hedge the portfolio based on the model prediction. As a result, the variance of 

return is certainly reduced by the hedge with TRS, and the standard deviation of 

return of the hedged portfolio is 39% of the naked portfolio in the best case. We 

also confirm that in general the more diversified the portfolio, the more effective 

the hedge.  

 

But the hedging effectiveness differs substantially between periods, because the 

covariance of property returns and index is highly volatile. This means that the 

basis risk of hedging with TRS is high, and the hedging effectiveness 

subsequently varies depending on the period. We find the diversification effect in 

hedging effectiveness is brought by not the rise of the average covariance but 

the convergence to the average covariance. 

 

For actual performance assessment, we find that the difference between actual 

return and expected return of the hedged portfolio doesn’t always correspond to 

the risk the investor expects to take compared with the naked portfolio. This is 

because the return of portfolio depends critically on the prediction of the index 

and the prediction error of the index model is too large. As the model is 

estimated with relatively few observations in this study because of the restriction 

of data, one extreme change tends to make an enormous impact on the 

estimation. The sudden break included in the actual index process makes the 

model estimation problematic, and this produces a large prediction error. 
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