28 research outputs found
3-D Human Action Recognition by Shape Analysis of Motion Trajectories on Riemannian Manifold
International audienceRecognizing human actions in 3D video sequences is an important open problem that is currently at the heart of many research domains including surveillance, natural interfaces and rehabilitation. However, the design and development of models for action recognition that are both accurate and efficient is a challenging task due to the variability of the human pose, clothing and appearance. In this paper, we propose a new framework to extract a compact representation of a human action captured through a depth sensor, and enable accurate action recognition. The proposed solution develops on fitting a human skeleton model to acquired data so as to represent the 3D coordinates of the joints and their change over time as a trajectory in a suitable action space. Thanks to such a 3D joint-based framework, the proposed solution is capable to capture both the shape and the dynamics of the human body simultaneously. The action recognition problem is then formulated as the problem of computing the similarity between the shape of trajectories in a Riemannian manifold. Classification using kNN is finally performed on this manifold taking advantage of Riemannian geometry in the open curve shape space. Experiments are carried out on four representative benchmarks to demonstrate the potential of the proposed solution in terms of accuracy/latency for a low-latency action recognition. Comparative results with state-of-the-art methods are reported
COVID-19, A Global Health Concern Requiring Science-Based Solutions
Scientifically-based concrete action points to reduce the spread, lessen the impact, reduce the concerns of the wider population, and avoid further outbreaks for governments, organizations, and individuals are neededFinal Published versio
The 3rd Global Summit of Research Institutes for Disaster Risk Reduction: Expanding the Platform for Bridging Science and Policy Making
The Global Alliance of Disaster Research Institutes held its 3rd Global Summit of Research Institutes for Disaster Risk Reduction at the Disaster Prevention Research Institute, Kyoto University, Japan, 19–21 March, 2017. The Global Alliance seeks to contribute to enhancing disaster risk reduction (DRR) and disaster resilience through the collaboration of research organizations around the world. The summit aim was to expand the platform for bridging science and policy making by evaluating the evidence base needed to meet the expected outcomes and actions of the Sendai Framework for Disaster Risk Reduction 2015–2030 and its Science and Technology Roadmap. The summit reflected the international nature of collaborative research and action. A pre-conference questionnaire filled out by Global Alliance members identified 323 research projects that are indicative of current research. These were categorized to support seven parallel discussion sessions related to the Sendai Framework priorities for action. Four discussion sessions focused on research that aims to deepen the understanding of disaster risks. Three cross-cutting sessions focused on research that is aimed at the priorities for action on governance, resilience, and recovery. Discussion summaries were presented in plenary sessions in support of outcomes for widely enhancing the science and policy of DRR
Recommended from our members
Ten new insights in climate science 2020 – a horizon scan
Non-technical summary
We summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding of Earth's sensitivity to carbon dioxide, finds that permafrost thaw could release more carbon emissions than expected and that the uptake of carbon in tropical ecosystems is weakening. Adverse impacts on human society include increasing water shortages and impacts on mental health. Options for solutions emerge from rethinking economic models, rights-based litigation, strengthened governance systems and a new social contract. The disruption caused by COVID-19 could be seized as an opportunity for positive change, directing economic stimulus towards sustainable investments.
Technical summary
A synthesis is made of ten fields within climate science where there have been significant advances since mid-2019, through an expert elicitation process with broad disciplinary scope. Findings include: (1) a better understanding of equilibrium climate sensitivity; (2) abrupt thaw as an accelerator of carbon release from permafrost; (3) changes to global and regional land carbon sinks; (4) impacts of climate change on water crises, including equity perspectives; (5) adverse effects on mental health from climate change; (6) immediate effects on climate of the COVID-19 pandemic and requirements for recovery packages to deliver on the Paris Agreement; (7) suggested long-term changes to governance and a social contract to address climate change, learning from the current pandemic, (8) updated positive cost–benefit ratio and new perspectives on the potential for green growth in the short- and long-term perspective; (9) urban electrification as a strategy to move towards low-carbon energy systems and (10) rights-based litigation as an increasingly important method to address climate change, with recent clarifications on the legal standing and representation of future generations.
Social media summary
Stronger permafrost thaw, COVID-19 effects and growing mental health impacts among highlights of latest climate science
Hydrochemistry and environmental isotopes (O, H, H, He/He) of groundwater and floodwater in the great area of Hurghada, Eastern Desert of Egypt
Porous and fractured aquifers exist in the area of Hurghada, Eastern Desert of Egypt, whose recharge processes through the common flash floods are not identified. Hydrochemical parameters, stable isotopes ¹⁸O, ²H and tritium in floodwater and groundwater were applied in the area subject to study. Additionally, He isotopes were investigated in the deep wells in the faulted zone at the Abu Shaar Plateau. ³H activity in all sampled points lies below the detection limit excluding a recent recharge component in groundwater. However, the hydrochemical ratios and the stable isotope signature confirm that the shallow wells and springs (Red Sea Hills group) are being recharged from modern precipitation. The hydrochemical parameters of the deep wells at the Abu Shaar Plateau (coastal plain group) confirm another origin for the ions rather than the modern precipitation. Together with the ¹⁸O and ²H values, the Br/Cl ratio of this group confirms the absence of seawater intrusion component and the role of the fault as a hydraulic barrier. These ¹⁸O and ²H values deviate from the GMWL confirming an evaporation effect and colder infiltration conditions and reveal strongly a possible mixing with the Nubian Sandstone in the region. The ³He/⁴He ratio confirms a mantle contribution of 2% from the total He components
Analysis of Trajectory Ontology Inference Complexity over Domain and Temporal Rules
International audienceCapture devices rise large scale trajectory data from moving objects. These devices use different technologies like global navigation satellite system (GNSS), wireless communication, radio-frequency identification (RFID), and other sensors. Huge trajectory data are available today. In this paper, we use an ontological data modeling approach to build a trajectory ontology from such large data. This ontology contains temporal concepts, so we map it to a temporal ontology. We present an implementation framework for declarative and imperative parts of ontology rules in a semantic data store. An inference mechanism is computed over these semantic data. The computational time and memory of the inference increases very rapidly as a function of the data size. For this reason, we propose a two-tier inference filters on data. The primary filter analyzes the trajectory data considering all the possible domain constraints. The analyzed data are considered as the first knowledge base. The secondary filter then computes the inference over the filtered trajectory data and yields to the final knowledge base, that the user can query
Hydrochemistry and environmental isotopes (18O, 2H, 3H, 3He/4He) of groundwater and floodwater in the great area of Hurghada, Eastern Desert of Egypt
Porous and fractured aquifers exist in the area of Hurghada, Eastern Desert of Egypt, whose recharge processes through the common flash floods are not identified. Hydrochemical parameters, stable isotopes 18O, 2H and tritium in floodwater and groundwater were applied in the area subject to study. Additionally, He isotopes were investigated in the deep wells in the faulted zone at the Abu Shaar Plateau. 3H activity in all sampled points lies below the detection limit excluding a recent recharge component in groundwater. However, the hydrochemical ratios and the stable isotope signature confirm that the shallow wells and springs (Red Sea Hills group) are being recharged from modern precipitation. The hydrochemical parameters of the deep wells at the Abu Shaar Plateau (coastal plain group) confirm another origin for the ions rather than the modern precipitation. Together with the 18O and 2H values, the Br/Cl ratio of this group confirms the absence of seawater intrusion component and the role of the fault as a hydraulic barrier. These 18O and 2H values deviate from the GMWL confirming an evaporation effect and colder infiltration conditions and reveal strongly a possible mixing with the Nubian Sandstone in the region. The 3He/4He ratio confirms a mantle contribution of 2% from the total He components.Open Access funding enabled and organized by Projekt DEA
A ligand-field approach for the low-lying states of Ca, Sr and Ba monohalides
International audienc