26 research outputs found

    Clinical Considerations in Orthodontically Forced Eruption for Restorative Purposes

    Get PDF
    For restorations on teeth involving invasion of the supracrestal tissue attachment (biological width), as well as for lack of ferrule effect, crown lengthening is required for long-term periodontal health and success of the restoration. In the same fashion, site development is often necessary prior to implant placement in order to provide optimal peri-implant soft and hard tissue architecture conducive to future esthetics and function. Orthodontic extrusion, also known as forced eruption, has been developed and employed clinically to serve the purposes of increasing the clinical crown length, correcting the periodontal defect, and developing the implant site. In order to provide comprehensive guidance on the clinical usage of this technique and maximize the outcome for patients who receive the dental restoration, the currently available literatures were summarized and discussed in the current review. Compared to traditional crown lengthening surgery, forced eruption holds advantages of preserving supporting bone, providing improved esthetics, limiting the involvement of adjacent teeth, and decreasing the negative impact on crown-to-root ratio compared to the traditional resective approach. As a non-invasive and natural technique capable of increasing the available volume of bone and soft tissue, forced eruption is also an attractive and promising option for implant site development. Both fixed and removable appliances can be used to achieve the desired extrusion, but patient compliance is a primary limiting factor for the utilization of removable appliances. In summary, forced eruption is a valuable treatment adjunct for patients requiring crown lengthening or implant restorations. Nonetheless, comprehensive evaluation and treatment planning are required for appropriate case selection based upon the known indications and contraindications for each purpose; major contraindications include inflammation, ankylosis, hypercementosis, vertical root fracture, and root proximity. Further studies are necessary to elucidate the long-term stability of orthodontically extruded teeth and the supporting bone and soft tissue that followed them. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Minimal Symptom Expression' in Patients With Acetylcholine Receptor Antibody-Positive Refractory Generalized Myasthenia Gravis Treated With Eculizumab

    Get PDF
    The efficacy and tolerability of eculizumab were assessed in REGAIN, a 26-week, phase 3, randomized, double-blind, placebo-controlled study in anti-acetylcholine receptor antibody-positive (AChR+) refractory generalized myasthenia gravis (gMG), and its open-label extension

    A Modern Approach to Treat Molar/Incisor Pattern Periodontitis—Review

    No full text
    Molar–incisor pattern periodontitis (MIPP) is a severe form of periodontal disease characterized by rapid attachment loss and bone destruction affecting the molars and incisors. Formerly referred to as aggressive periodontitis, the terminology for this condition was revised after the 2017 workshop on the classification of periodontal and peri-implant diseases and conditions. Despite the modification in nomenclature, the treatment strategies for MIPP remain a critical area of investigation. The core principles of MIPP treatment involve controlling local and systemic risk factors, managing inflammation, and arresting disease progression. Traditional non-surgical periodontal therapy, including scaling and root planing, is commonly employed as an initial step together with the prescription of antibiotics. Surgical intervention may be necessary to address the severe attachment loss. Surgical techniques like resective and regenerative procedures can aid in achieving periodontal health and improving esthetic outcomes. This review article aims to provide an overview of the current understanding and advancements in the treatment modalities of MIPP. Through an extensive analysis of the existing literature, we discuss various modern therapeutic approaches that have been explored for managing this challenging periodontal condition

    Identification and Characterization of Triple Action Bioagents (TAB) and Their Potency against Fusarium Wilt of Lentil

    No full text
    Fusarium wilt is a severe disease that plays a significant role in reducing the yield of lentil. Under favorable conditions for disease growth, the disease can cause complete crop failure and can be a crucial limiting issue for lentil cultivation in specific geographical zones. The current work focused on isolating potentialbio-agents exhibiting copper oxychloride resistance and evaluating their efficacy in seed treatment for ecologically sustainable management of Fusarium wilt of lentil. Seventy biocontrol agent isolates were isolated and tested for resistance by growing them on Potato Dextrose Agar medium (PDA) amended with copper oxychloride at the rate of 2500 ppm. Isolate-H10 and isolate-C9 showed more excellent compatibility with copper oxychloride fungicide with 69 mm and 65 mm radial growths, respectively. The isolates H10 and C9 had the highest inhibitory percentages of 84.30% and 83.94% against Fusarium oxysporum f. sp. lentis, respectively, and the highest phosphorus solubilization index (PSI). Primers (ITS 1 and ITS 4) identified these putative bioagents as Trichoderma harzianum isolate skua-tab-1 and Penicillium crysogenum strain Tab2. Sequences were submitted to the NCBI and assigned the accession numbers MK414603 and MK418066. In pot culture, these isolates also demonstrated their superiority in reducing the disease incidence and severity if seeds were treated with H10 and C9 alone or in combination with copper oxychloride fungicide. The two isolated bioagents exhibit three fundamental properties: compatibility with copper oxychloride, antagonistic activity toward the pathogen fall armyworm, and the ability to dissolve phosphorus minerals

    High-Efficiency Small-Molecule-Based Organic Light Emitting Devices with Solution Processes and Oxadiazole-Based Electron Transport Materials

    No full text
    We demonstrate high-efficiency small-molecule-based white phosphorescent organic light emitting diodes (PHOLEDs) by single-active-layer solution-based processes with the current efficiency of 17.3 cdA<sup>‑1</sup> and maximum luminous efficiency of 8.86 lmW<sup>‑1</sup> at a current density of 1 mA cm<sup>‑2</sup>. The small-molecule based emitting layers are codoped with blue and orange phosphorescent dyes. We show that the presence of CsF/Al at cathodes not only improves electron transport in oxadiazole-containing electron transport layers (ETLs), but also facilitates electron injection through the reacted oxadiazole moiety to reduce interface resistance, which results in the enhancement of current efficiency. By selecting oxadiazole-based materials as ETLs with proper electron injection layer (EIL)/cathode structures, the brightness and efficiency of white PHOLEDs are significantly improved
    corecore