287 research outputs found

    Examining ERP Committee Beliefs: A Comparison of Alternative Models

    Get PDF
    Various models have been proposed to explain information technology (IT) adoption behavior. However, these models are based primarily on logical deliberation. In reality, it is impossible to obtain perfect information for a rational evaluation of new or emerging IT. In this situation, sometimes the “best alternative” is imitation. We believe that two opposing forces influence the beliefs of enterprise resource planning (ERP) committee members: rational and imitative. We propose here an integrated model and examine it together with diffusion of innovation (DOI) and imitation models. The study findings indicate that our integrated model has better explanatory power. In addition, imitative forces are shown to have a consistent direct effect and significant indirect effect on beliefs. Hence, imitative forces play a crucial role in the decision-making process, which opens up a new avenue for research into technology adoption

    Deconvoluting lung evolution: from phenotypes to gene regulatory networks

    Get PDF
    Speakers in this symposium presented examples of respiratory regulation that broadly illustrate principles of evolution from whole organ to genes. The swim bladder and lungs of aquatic and terrestrial organisms arose independently from a common primordial "respiratory pharynx” but not from each other. Pathways of lung evolution are similar between crocodiles and birds but a low compliance of mammalian lung may have driven the development of the diaphragm to permit lung inflation during inspiration. To meet the high oxygen demands of flight, bird lungs have evolved separate gas exchange and pump components to achieve unidirectional ventilation and minimize dead space. The process of "screening” (removal of oxygen from inspired air prior to entering the terminal units) reduces effective alveolar oxygen tension and potentially explains why nonathletic large mammals possess greater pulmonary diffusing capacities than required by their oxygen consumption. The "primitive” central admixture of oxygenated and deoxygenated blood in the incompletely divided reptilian heart is actually co-regulated with other autonomic cardiopulmonary responses to provide flexible control of arterial oxygen tension independent of ventilation as well as a unique mechanism for adjusting metabolic rate. Some of the most ancient oxygen-sensing molecules, i.e., hypoxia-inducible factor-1alpha and erythropoietin, are up-regulated during mammalian lung development and growth under apparently normoxic conditions, suggesting functional evolution. Normal alveolarization requires pleiotropic growth factors acting via highly conserved cell-cell signal transduction, e.g., parathyroid hormone-related protein transducing at least partly through the Wingless/int pathway. The latter regulates morphogenesis from nematode to mammal. If there is commonality among these diverse respiratory processes, it is that all levels of organization, from molecular signaling to structure to function, co-evolve progressively, and optimize an existing gas-exchange framewor

    Deconvoluting lung evolution: from phenotypes to gene regulatory networks

    Get PDF
    Speakers in this symposium presented examples of respiratory regulation that broadly illustrate principles of evolution from whole organ to genes. The swim bladder and lungs of aquatic and terrestrial organisms arose independently from a common primordial “respiratory pharynx” but not from each other. Pathways of lung evolution are similar between crocodiles and birds but a low compliance of mammalian lung may have driven the development of the diaphragm to permit lung inflation during inspiration. To meet the high oxygen demands of flight, bird lungs have evolved separate gas exchange and pump components to achieve unidirectional ventilation and minimize dead space. The process of “screening” (removal of oxygen from inspired air prior to entering the terminal units) reduces effective alveolar oxygen tension and potentially explains why nonathletic large mammals possess greater pulmonary diffusing capacities than required by their oxygen consumption. The “primitive” central admixture of oxygenated and deoxygenated blood in the incompletely divided reptilian heart is actually co-regulated with other autonomic cardiopulmonary responses to provide flexible control of arterial oxygen tension independent of ventilation as well as a unique mechanism for adjusting metabolic rate. Some of the most ancient oxygen-sensing molecules, i.e., hypoxia-inducible factor-1alpha and erythropoietin, are up-regulated during mammalian lung development and growth under apparently normoxic conditions, suggesting functional evolution. Normal alveolarization requires pleiotropic growth factors acting via highly conserved cell–cell signal transduction, e.g., parathyroid hormone-related protein transducing at least partly through the Wingless/int pathway. The latter regulates morphogenesis from nematode to mammal. If there is commonality among these diverse respiratory processes, it is that all levels of organization, from molecular signaling to structure to function, co-evolve progressively, and optimize an existing gas-exchange framework

    Inducing electron spin coherence in GaAs quantum well waveguides: Spin coherence without spin precession

    Full text link
    Electron spin coherence is induced via light-hole transitions in a quantum well waveguide without either an external or internal DC magnetic field. In the absence of spin precession, the induced spin coherence is detected through effects of quantum interference in the spectral domain coherent nonlinear optical response. We interpret the experimental results qualitatively using a simple few-level model with only the optical transition selection rule as its basic ingredients

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    A comparative study on long-term evoked auditory and visual potential responses between Schizophrenic patients and normal subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The electrical signals measuring method is recommended to examine the relationship between neuronal activities and measure with the event related potentials (ERPs) during an auditory and a visual oddball paradigm between schizophrenic patients and normal subjects. The aim of this study is to discriminate the activation changes of different stimulations evoked by auditory and visual ERPs between schizophrenic patients and normal subjects.</p> <p>Methods</p> <p>Forty-three schizophrenic patients were selected as experimental group patients, and 40 healthy subjects with no medical history of any kind of psychiatric diseases, neurological diseases, or drug abuse, were recruited as a control group. Auditory and visual ERPs were studied with an oddball paradigm. All the data were analyzed by SPSS statistical software version 10.0.</p> <p>Results</p> <p>In the comparative study of auditory and visual ERPs between the schizophrenic and healthy patients, P300 amplitude at Fz, Cz, and Pz and N100, N200, and P200 latencies at Fz, Cz, and Pz were shown significantly different. The cognitive processing reflected by the auditory and the visual P300 latency to rare target stimuli was probably an indicator of the cognitive function in schizophrenic patients.</p> <p>Conclusions</p> <p>This study shows the methodology of application of auditory and visual oddball paradigm identifies task-relevant sources of activity and allows separation of regions that have different response properties. Our study indicates that there may be slowness of automatic cognitive processing and controlled cognitive processing of visual ERPs compared to auditory ERPs in schizophrenic patients. The activation changes of visual evoked potentials are more regionally specific than auditory evoked potentials.</p
    corecore