120 research outputs found

    On the Dynamics of Proto-Neutron Star Winds and r-Process Nucleosynthesis

    Full text link
    We study here the formation of heavy r-process nuclei in the high-entropy environment of rapidly expanding neutrino-driven winds from compact objects. In particular, we explore the sensitivity of the element creation in the A>130 region to the low-temperature behavior of the outflows. For this purpose we employ a simplified model of the dynamics and thermodynamical evolution for radiation dominated, adiabatic outflows. It consists of a first stage of fast, exponential cooling, followed by a second phase of slower evolution, either assuming constant density and temperature or a power-law decay of these quantities. These cases are supposed to capture the most relevant effects of a strong deceleration or decreasing acceleration of the transsonic outflows, respectively, e.g. in a wind termination shock caused by the collision with the slower, preceding supernova ejecta. We find that not only the transition temperature between the two expansion phases can make a big difference in the formation of the platinum peak, but also the detailed cooling law during the later phase. Unless the transition temperature and corresponding (free neutron) density become too small (T < 2*10^8 K), a lower temperature or faster temperature decline during this phase allow for a stronger appearance of the third abundance peak. Since the nuclear photodisintegration rates between ~2*10^8 K and ~10^9 K are more sensitive to the temperature than the n-capture rates are to the free neutron density, a faster cooling in this temperature regime shifts the r-process path closer to the n-drip line. With low (gamma,n)- but high beta-decay rates, the r-processing then does not proceed through a (gamma,n)-(n,gamma) equilibrium but through a quasi-equilibrium of (n,gamma)-reactions and beta-decays, as recently also pointed out by Wanajo.Comment: 18 pages, 14 figures with 25 eps plots; referee comments included; accepted by Astronomy & Astrophysic

    Proton-Rich Nuclear Statistical Equilibrium

    Full text link
    Proton-rich material in a state of nuclear statistical equilibrium (NSE) is one of the least studied regimes of nucleosynthesis. One reason for this is that after hydrogen burning, stellar evolution proceeds at conditions of equal number of neutrons and protons or at a slight degree of neutron-richness. Proton-rich nucleosynthesis in stars tends to occur only when hydrogen-rich material that accretes onto a white dwarf or neutron star explodes, or when neutrino interactions in the winds from a nascent proto-neutron star or collapsar-disk drive the matter proton-rich prior to or during the nucleosynthesis. In this paper we solve the NSE equations for a range of proton-rich thermodynamic conditions. We show that cold proton-rich NSE is qualitatively different from neutron-rich NSE. Instead of being dominated by the Fe-peak nuclei with the largest binding energy per nucleon that have a proton to nucleon ratio close to the prescribed electron fraction, NSE for proton-rich material near freeze-out temperature is mainly composed of Ni56 and free protons. Previous results of nuclear reaction network calculations rely on this non-intuitive high proton abundance, which this paper will explain. We show how the differences and especially the large fraction of free protons arises from the minimization of the free energy as a result of a delicate competition between the entropy and the nuclear binding energy.Comment: 4 pages, 7 figure

    Neutrino-driven wind simulations and nucleosynthesis of heavy elements

    Full text link
    Neutrino-driven winds, which follow core-collapse supernova explosions, present a fascinating nuclear astrophysics problem that requires understanding advanced astrophysics simulations, the properties of matter and neutrino interactions under extreme conditions, the structure and reactions of exotic nuclei, and comparisons against forefront astronomical observations. The neutrino-driven wind has attracted vast attention over the last 20 years as it was suggested to be a candidate for the astrophysics site where half of the heavy elements are produced via the r-process. In this review, we summarize our present understanding of neutrino-driven winds from the dynamical and nucleosynthesis perspectives. Rapid progress has been made during recent years in understanding the wind with improved simulations and better micro physics. The current status of the fields is that hydrodynamical simulations do not reach the extreme conditions necessary for the r-process and the proton or neutron richness of the wind remains to be investigated in more detail. However, nucleosynthesis studies and observations point already to neutrino-driven winds to explain the origin of lighter heavy elements, such as Sr, Y, Zr.Comment: Submitted to: J. Phys. G: Nucl. Phy

    Nucleosynthesis Modes in the High-Entropy-Wind of Type II Supernovae: Comparison of Calculations with Halo-Star Observations

    Full text link
    While the high-entropy wind (HEW) of Type II supernovae remains one of the more promising sites for the rapid neutron-capture (r-) process, hydrodynamic simulations have yet to reproduce the astrophysical conditions under which the latter occurs. We have performed large-scale network calculations within an extended parameter range of the HEW, seeking to identify or to constrain the necessary conditions for a full reproduction of all r-process residuals N_{r,\odot}=N_{\odot}-N_{s,\odot} by comparing the results with recent astronomical observations. A superposition of weighted entropy trajectories results in an excellent reproduction of the overall N_{r,\odot}-pattern beyond Sn. For the lighter elements, from the Fe-group via Sr-Y-Zr to Ag, our HEW calculations indicate a transition from the need for clearly different sources (conditions/sites) to a possible co-production with r-process elements, provided that a range of entropies are contributing. This explains recent halo-star observations of a clear non-correlation of Zn and Ge and a weak correlation of Sr - Zr with heavier r-process elements. Moreover, new observational data on Ru and Pd seem to confirm also a partial correlation with Sr as well as the main r-process elements (e.g. Eu).Comment: 15 pages, 1 table, 4 figures; To be published in the Astrophysical Journal Letter

    The r-Process in Supernovae: Impact of New Microscopic Mass Formulas

    Full text link
    The astrophysical origin of rr-process nuclei remains a long-standing mystery. Although some astrophysical scenarios show some promise, many uncertainties involved in both the astrophysical conditions and in the nuclear properties far from the β\beta-stability have inhibited us from understanding the nature of the rr-process. The purpose of the present paper is to examine the effects of the newly-derived microscopic Hartree-Fock-Bogoliubov (HFB) mass formulas on the rr-process nucleosynthesis and analyse to what extent a solar-like rr-abundance distribution can be obtained. The rr-process calculations with the HFB-2 mass formula are performed, adopting the parametrized model of the prompt explosion from a collapsing O-Ne-Mg core for the physical conditions and compared with the results obtained with the HFB-7 and droplet-type mass formulas. Due to its weak shell effect at the neutron magic numbers in the neutron-rich region, the microscopic mass formulas (HFB-2 and HFB-7) give rise to a spread of the abundance distribution in the vicinity of the rr-process peaks (A=130A = 130 and 195). While this effect resolves the large underproduction at A115A \approx 115 and 140 obtained with droplet-type mass formulas, large deviations compared to the solar pattern are found near the third rr-process peak. It is shown that a solar-like rr-process pattern can be obtained if the dynamical timescales of the outgoing mass trajectories are increased by a factor of about 2-3, or if the β\beta-decay rates are systematically increased by the same factor.Comment: 22 pages, 12 figures, accepted for publication in ApJ, some color figures converted to B&W due to size constraint

    Role of Core-collapse Supernovae in Explaining Solar System Abundances of p Nuclides

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for published in The Astrophysical Journal. The Version of Record is available online at: https://doi.org/10.3847/1538-4357/aaa4f7The production of the heavy stable proton-rich isotopes between 74Se and 196Hg - the p nuclides - is due to the contribution from different nucleosynthesis processes, activated in different types of stars. Whereas these processes have been subject to various studies, their relative contributions to Galactic chemical evolution (GCE) are still a matter of debate. Here we investigate for the first time the nucleosynthesis of p nuclides in GCE by including metallicity and progenitor mass-dependent yields of core-collapse supernovae (ccSNe) into a chemical evolution model. We used a grid of metallicities and progenitor masses from two different sets of stellar yields and followed the contribution of ccSNe to the Galactic abundances as a function of time. In combination with previous studies on p-nucleus production in thermonuclear supernovae (SNIa), and using the same GCE description, this allows us to compare the respective roles of SNeIa and ccSNe in the production of p-nuclei in the Galaxy. The γ process in ccSN is very efficient for a wide range of progenitor masses (13 M o-25 M o) at solar metallicity. Since it is a secondary process with its efficiency depending on the initial abundance of heavy elements, its contribution is strongly reduced below solar metallicity. This makes it challenging to explain the inventory of the p nuclides in the solar system by the contribution from ccSNe alone. In particular, we find that ccSNe contribute less than 10% of the solar p nuclide abundances, with only a few exceptions. Due to the uncertain contribution from other nucleosynthesis sites in ccSNe, such as neutrino winds or α-rich freeze out, we conclude that the light p-nuclides 74Se, 78Kr, 84Sr, and 92Mo may either still be completely or only partially produced in ccSNe. The γ-process accounts for up to twice the relative solar abundances for 74Se in one set of stellar models and 196Hg in the other set. The solar abundance of the heaviest p nucleus 196Hg is reproduced within uncertainties in one set of our models due to photodisintegration of the Pb isotopes 208,207,206Pb. For all other p nuclides, abundances as low as 2% of the solar level were obtained.Peer reviewe

    SN 2008S: an electron capture SN from a super-AGB progenitor?

    Get PDF
    We present comprehensive photometric and spectroscopic observations of the faint transient SN 2008S discovered in NGC 6946. SN 2008S exhibited slow photometric evolution and almost no spectral variability during the first nine months, implying a high density CS medium. The light curve is similar in shape to that of SN 1998S and SN 1979C, although significantly fainter at maximum light. Our quasi-bolometric lightcurve extends to 300 days and shows a tail phase decay rate consistent with that of ^{56}Co. We propose that this is evidence for an explosion and formation of ^{56}Ni (0.0015 +/- 0.0004 M_Sun). The large MIR flux detected shortly after explosion can be explained by a light echo from pre-exisiting dust. The late NIR flux excess is plausibly due to a combination of warm newly-formed ejecta dust together with shock-heated dust in the CS environment. We reassess the progenitor object detected previously in Spitzer archive images, supplementing this discussion with a model of the MIR spectral energy distribution. This supports the idea of a dusty, optically thick shell around SN 2008S with an inner radius of nearly 90AU and outer radius of 450AU, and an inferred heating source of 3000 K and luminosity of L ~ 10^{4.6} L_Sun. The combination of our monitoring data and the evidence from the progenitor analysis leads us to support the scenario of a weak electron capture supernova explosion in a super-AGB progenitor star (of initial mass 6-8 M_sun) embedded within a thick CS gaseous envelope. We suggest that all of main properties of the electron capture SN phenomenon are observed in SN 2008S and future observations may allow a definitive answer.Comment: accepted for publication in MNRAS (2009 May 7

    SN 2011ht: Confirming a Class of Interacting Supernovae with Plateau Light Curves (Type IIn-P)

    Full text link
    We present photometry and spectroscopy of the Type IIn supernova (SN) 2011ht, identified previously as a SN impostor. The light curve exhibits an abrupt transition from a well-defined ~120 day plateau to a steep bolometric decline. Leading up to peak brightness, a hot emission-line spectrum exhibits signs of interaction with circumstellar material (CSM), in the form of relatively narrow P-Cygni features of H I and He I superimposed on broad Lorentzian wings. For the remainder of the plateau phase the spectrum exhibits strengthening P-Cygni profiles of Fe II, Ca II, and H-alpha. By day 147, after the plateau has ended, the SN entered the nebular phase, heralded by the appearance of forbidden transitions of [O I], [O II], and [Ca II] over a weak continuum. At this stage, the light curve exhibits a low luminosity that is comparable to that sub-luminous Type II-P supernovae, and a relatively fast visual-wavelength decline that is significantly steeper than the Co-56 decay rate. However, the total bolometric decline, including the IR luminosity, is consistent with Co-56 decay, and implies a low Ni-56 mass of ~0.01 M(Sun). We therefore characterize SN 2011ht as a bona-fide core-collapse SN very similar to the peculiar SNe IIn 1994W and 2009kn. These three SNe define a subclass, which are Type IIn based on their spectrum, but that also exhibit well-defined plateaus and produce low Ni-56 yields. We therefore suggest Type IIn-P as a name for this subclass. Possible progenitors of SNe IIn-P, consistent with the available data, include 8-10 M(Sun) stars, which undergo core collapse as a result of electron capture after a brief phase of enhanced mass loss, or more massive M>25 M(Sun) progenitors, which experience substantial fallback of the metal-rich radioactive ejecta. In either case, the energy radiated by these three SNe during their plateau must be dominated by CSM interaction (abridged).Comment: accepted, post-proof version (includes new data

    The influence of collective neutrino oscillations on a supernova r-process

    Full text link
    Recently, it has been demonstrated that neutrinos in a supernova oscillate collectively. This process occurs much deeper than the conventional matter-induced MSW effect and hence may have an impact on nucleosynthesis. In this paper we explore the effects of collective neutrino oscillations on the r-process, using representative late-time neutrino spectra and outflow models. We find that accurate modeling of the collective oscillations is essential for this analysis. As an illustration, the often-used "single-angle" approximation makes grossly inaccurate predictions for the yields in our setup. With the proper multiangle treatment, the effect of the oscillations is found to be less dramatic, but still significant. Since the oscillation patterns are sensitive to the details of the emitted fluxes and the sign of the neutrino mass hierarchy, so are the r-process yields. The magnitude of the effect also depends sensitively on the astrophysical conditions - in particular on the interplay between the time when nuclei begin to exist in significant numbers and the time when the collective oscillation begins. A more definitive understanding of the astrophysical conditions, and accurate modeling of the collective oscillations for those conditions, is necessary.Comment: 27 pages, 10 figure
    corecore