173 research outputs found
Material matters: predicting the core hardness variance in industrialized case hardening of 18CrNi8 [Vorhersage der Kernhärtenvarianz von industriell einsatzgehärtetem 18CrNi8]
To explain the variance in core hardness of 18CrNi8 nozzle bodies after industrial heat treatment, several data sources, including steel melt composition, sensor process data, and measurement errors, of five years are aggregated. In order to predict hardness variations caused by alloy composition, traditional physical models by Maynier are compared with data-driven machine learning models, which show no advantage due to low data variability. Neither method can fully explain the visible drifts, which are better tracked by an alternative (i. e., filter model) that uses past measurements. Machine learning on features from heat treatment is not successful in predicting hardness change, presumably because the process is too stable. Finally, a large part of the variance is caused by the HV 1 measurement error
A novel method for the absolute fluorescence yield measurement by AIRFLY
One of the goals of the AIRFLY (AIR FLuorescence Yield) experiment is to
measure the absolute fluorescence yield induced by electrons in air to better
than 10% precision. We introduce a new technique for measurement of the
absolute fluorescence yield of the 337 nm line that has the advantage of
reducing the systematic uncertainty due to the detector calibration. The
principle is to compare the measured fluorescence yield to a well known process
- the Cerenkov emission. Preliminary measurements taken in the BFT (Beam Test
Facility) in Frascati, Italy with 350 MeV electrons are presented. Beam tests
in the Argonne Wakefield Accelerator at the Argonne National Laboratory, USA
with 14 MeV electrons have also shown that this technique can be applied at
lower energies.Comment: presented at the 5th Fluorescence Workshop, El Escorial - Madrid,
Spain, 16 - 20 September 200
Temperature and Humidity Dependence of Air Fluorescence Yield measured by AIRFLY
The fluorescence detection of ultra high energy cosmic rays requires a
detailed knowledge of the fluorescence light emission from nitrogen molecules
over a wide range of atmospheric parameters, corresponding to altitudes typical
of the cosmic ray shower development in the atmosphere. We have studied the
temperature and humidity dependence of the fluorescence light spectrum excited
by MeV electrons in air. Results for the 313.6 nm, 337.1 nm, 353.7 nm and 391.4
nm bands are reported in this paper. We found that the temperature and humidity
dependence of the quenching process changes the fluorescence yield by a
sizeable amount (up to 20%) and its effect must be included for a precise
estimation of the energy of ultra high energy cosmic rays.Comment: presented at the 5th Fluorescence Workshop, El Escorial - Madrid,
Spain, 16 - 20 September 2007, to appear in Nuclear Instruments and Methods
Limits on the high-energy gamma and neutrino fluxes from the SGR 1806-20 giant flare of December 27th, 2004 with the AMANDA-II detector
On December 27th 2004, a giant gamma flare from the Soft Gamma-ray Repeater
1806-20 saturated many satellite gamma-ray detectors. This event was by more
than two orders of magnitude the brightest cosmic transient ever observed. If
the gamma emission extends up to TeV energies with a hard power law energy
spectrum, photo-produced muons could be observed in surface and underground
arrays. Moreover, high-energy neutrinos could have been produced during the SGR
giant flare if there were substantial baryonic outflow from the magnetar. These
high-energy neutrinos would have also produced muons in an underground array.
AMANDA-II was used to search for downgoing muons indicative of high-energy
gammas and/or neutrinos. The data revealed no significant signal. The upper
limit on the gamma flux at 90% CL is dN/dE < 0.05 (0.5) TeV^-1 m^-2 s^-1 for
gamma=-1.47 (-2). Similarly, we set limits on the normalization constant of the
high-energy neutrino emission of 0.4 (6.1) TeV^-1 m^-2 s^-1 for gamma=-1.47
(-2).Comment: 14 pages, 3 figure
Calibration and Characterization of the IceCube Photomultiplier Tube
Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube
neutrino observatory. Many are placed deep in the ice to detect Cherenkov light
emitted by the products of high-energy neutrino interactions, and others are
frozen into tanks on the surface to detect particles from atmospheric cosmic
ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu
Photonics. This paper describes the laboratory characterization and calibration
of these PMTs before deployment. PMTs were illuminated with pulses ranging from
single photons to saturation level. Parameterizations are given for the single
photoelectron charge spectrum and the saturation behavior. Time resolution,
late pulses and afterpulses are characterized. Because the PMTs are relatively
large, the cathode sensitivity uniformity was measured. The absolute photon
detection efficiency was calibrated using Rayleigh-scattered photons from a
nitrogen laser. Measured characteristics are discussed in the context of their
relevance to IceCube event reconstruction and simulation efforts.Comment: 40 pages, 12 figure
Search for Relativistic Magnetic Monopoles with IceCube
We present the first results in the search for relativistic magnetic
monopoles with the IceCube detector, a subsurface neutrino telescope located in
the South Polar ice cap containing a volume of 1 km. This analysis
searches data taken on the partially completed detector during 2007 when
roughly 0.2 km of ice was instrumented. The lack of candidate events
leads to an upper limit on the flux of relativistic magnetic monopoles of
\Phi_{\mathrm{90%C.L.}}\sim 3\e{-18}\fluxunits for . This is a
factor of 4 improvement over the previous best experimental flux limits up to a
Lorentz boost below . This result is then interpreted for a
wide range of mass and kinetic energy values.Comment: 11 pages, 11 figures. v2 is minor text edits, no changes to resul
Lateral Distribution of Muons in IceCube Cosmic Ray Events
In cosmic ray air showers, the muon lateral separation from the center of the
shower is a measure of the transverse momentum that the muon parent acquired in
the cosmic ray interaction. IceCube has observed cosmic ray interactions that
produce muons laterally separated by up to 400 m from the shower core, a factor
of 6 larger distance than previous measurements. These muons originate in high
pT (> 2 GeV/c) interactions from the incident cosmic ray, or high-energy
secondary interactions. The separation distribution shows a transition to a
power law at large values, indicating the presence of a hard pT component that
can be described by perturbative quantum chromodynamics. However, the rates and
the zenith angle distributions of these events are not well reproduced with the
cosmic ray models tested here, even those that include charm interactions. This
discrepancy may be explained by a larger fraction of kaons and charmed
particles than is currently incorporated in the simulations
An improved method for measuring muon energy using the truncated mean of dE/dx
The measurement of muon energy is critical for many analyses in large
Cherenkov detectors, particularly those that involve separating
extraterrestrial neutrinos from the atmospheric neutrino background. Muon
energy has traditionally been determined by measuring the specific energy loss
(dE/dx) along the muon's path and relating the dE/dx to the muon energy.
Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in
dE/dx values is quite large, leading to a typical energy resolution of 0.29 in
log10(E_mu) for a muon observed over a 1 km path length in the IceCube
detector. In this paper, we present an improved method that uses a truncated
mean and other techniques to determine the muon energy. The muon track is
divided into separate segments with individual dE/dx values. The elimination of
segments with the highest dE/dx results in an overall dE/dx that is more
closely correlated to the muon energy. This method results in an energy
resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This
technique is applicable to any large water or ice detector and potentially to
large scintillator or liquid argon detectors.Comment: 12 pages, 16 figure
- …