16 research outputs found

    Impact of germline DNA repair gene variants on prognosis and treatment of men with advanced prostate cancer.

    Get PDF
    The clinical importance of germline variants in DNA repair genes (DRGs) is becoming increasingly recognized, but their impact on advanced prostate cancer prognosis remains unclear. A cohort of 221 newly diagnosed metastatic castration-resistant prostate cancer (mCRPC) patients were screened for pathogenic germline variants in 114 DRGs. The primary endpoint was progression-free survival (PFS) on first-line androgen signaling inhibitor (ARSI) treatment for mCRPC. Secondary endpoints were time to mCRPC progression on initial androgen deprivation therapy (ADT) and overall survival (OS). Twenty-seven patients (12.2%) carried a germline DRG variant. DRG carrier status was independently associated with shorter PFS on first-line ARSI [HR 1.72 (1.06-2.81), P = 0.029]. At initiation of ADT, DRG carrier status was independently associated with shorter progression time to mCRPC [HR 1.56, (1.02-2.39), P = 0.04] and shorter OS [HR 1.99, (1.12-3.52), P = 0.02]. Investigating the contributions of individual germline DRG variants on PFS and OS revealed CHEK2 variants to have little effect. Furthermore, prior taxane treatment was associated with worse PFS on first-line ARSI for DRG carriers excluding CHEK2 (P = 0.0001), but not for noncarriers. In conclusion, germline DRG carrier status holds independent prognostic value for predicting advanced prostate cancer patient outcomes and may potentially inform on optimal treatment sequencing already at the hormone-sensitive stage

    Germline DNA Repair Gene Mutations in Young-onset Prostate Cancer Cases in the UK: Evidence for a More Extensive Genetic Panel

    Get PDF
    Background Rare germline mutations in DNA repair genes are associated with prostate cancer (PCa) predisposition and prognosis. Objective To quantify the frequency of germline DNA repair gene mutations in UK PCa cases and controls, in order to more comprehensively evaluate the contribution of individual genes to overall PCa risk and likelihood of aggressive disease. Design, setting, and participants We sequenced 167 DNA repair and eight PCa candidate genes in a UK-based cohort of 1281 young-onset PCa cases (diagnosed at ≤60 yr) and 1160 selected controls. Outcome measurements and statistical analysis Gene-level SKAT-O and gene-set adaptive combination of p values (ADA) analyses were performed separately for cases versus controls, and aggressive (Gleason score ≥8, n = 201) versus nonaggressive (Gleason score ≤7, n = 1048) cases. Results and limitations We identified 233 unique protein truncating variants (PTVs) with minor allele frequency <0.5% in controls in 97 genes. The total proportion of PTV carriers was higher in cases than in controls (15% vs 12%, odds ratio [OR] = 1.29, 95% confidence interval [CI] 1.01–1.64, p = 0.036). Gene-level analyses selected NBN (pSKAT-O = 2.4 × 10−4) for overall risk and XPC (pSKAT-O = 1.6 × 10−4) for aggressive disease, both at candidate-level significance (p < 3.1 × 10−4 and p < 3.4 × 10−4, respectively). Gene-set analysis identified a subset of 20 genes associated with increased PCa risk (OR = 3.2, 95% CI 2.1–4.8, pADA = 4.1 × 10−3) and four genes that increased risk of aggressive disease (OR = 11.2, 95% CI 4.6–27.7, pADA = 5.6 × 10−3), three of which overlap the predisposition gene set. Conclusions The union of the gene-level and gene-set-level analyses identified 23 unique DNA repair genes associated with PCa predisposition or risk of aggressive disease. These findings will help facilitate the development of a PCa-specific sequencing panel with both predictive and prognostic potential. Patient summary This large sequencing study assessed the rate of inherited DNA repair gene mutations between prostate cancer patients and disease-free men. A panel of 23 genes was identified, which may improve risk prediction or treatment pathways in future clinical practice

    Identification of Genes with Rare Loss of Function Variants Associated with Aggressive Prostate Cancer and Survival.

    Get PDF
    BACKGROUND: Prostate cancer (PrCa) is a substantial cause of mortality among men globally. Rare germline mutations in BRCA2 have been validated robustly as increasing risk of aggressive forms with a poorer prognosis; however, evidence remains less definitive for other genes. OBJECTIVE: To detect genes associated with PrCa aggressiveness, through a pooled analysis of rare variant sequencing data from six previously reported studies in the UK Genetic Prostate Cancer Study (UKGPCS). DESIGN, SETTING, AND PARTICIPANTS: We accumulated a cohort of 6805 PrCa cases, in which a set of ten candidate genes had been sequenced in all samples. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We examined the association between rare putative loss of function (pLOF) variants in each gene and aggressive classification (defined as any of death from PrCa, metastatic disease, stage T4, or both stage T3 and Gleason score ≥8). Secondary analyses examined staging phenotypes individually. Cox proportional hazards modelling and Kaplan-Meier survival analyses were used to further examine the relationship between mutation status and survival. RESULTS AND LIMITATIONS: We observed associations between PrCa aggressiveness and pLOF mutations in ATM, BRCA2, MSH2, and NBN (odds ratio = 2.67-18.9). These four genes and MLH1 were additionally associated with one or more secondary analysis phenotype. Carriers of germline mutations in these genes experienced shorter PrCa-specific survival (hazard ratio = 2.15, 95% confidence interval 1.79-2.59, p = 4 × 10-16) than noncarriers. CONCLUSIONS: This study provides further support that rare pLOF variants in specific genes are likely to increase aggressive PrCa risk and may help define the panel of informative genes for screening and treatment considerations. PATIENT SUMMARY: By combining data from several previous studies, we have been able to enhance knowledge regarding genes in which inherited mutations would be expected to increase the risk of more aggressive PrCa. This may, in the future, aid in the identification of men at an elevated risk of dying from PrCa

    Germline sequencing in men with metastatic castration-resistant prostate cancer from the BARCODE2 study reveals a wide range of pathogenic variants in DNA repair genes

    Get PDF
    Abstract Background The presence of germline mutations plays an increasingly important role in risk assessment and treatment of prostate cancer (PrCa). Screening for high-risk mutations in subsets of patients is becoming routine. We explore the prevalence of germline genetic mutations in men with metastatic castration-resistant prostate cancer (mCRPC) recruited to the BARCODE2 trial. Methods The BARCODE2 trial is a two-part study investigating the response to carboplatin chemotherapy in mCRPC patients carrying a germline variant in a DNA repair gene (DRG). We report interim data from Part 1, in which participants are recruited for germline genetic testing using a customised next-generation sequencing panel consisting of 115 genes. Results These interim results (N = 220) demonstrate a similar frequency of germline DRG variants in mCRPC patients compared with previously published data (15% detection rate). No significant clinical differences were identified between all carriers and non-carriers, though BRCA2/ATM carriers were found to have a shorter time to mCRPC diagnosis. Conclusions Germline pathogenic/likely pathogenic (P/LP) variants in BRCA2 and ATM genes are associated with a shorter time to progression and rarer P/LP variants in other DRG genes may play a role in mCRPC. This justifies the use of routine screening of men with advanced PrCa for germline variants and supports the need for an expanded panel test. </jats:sec

    Rare germline variants in DNA repair genes and the angiogenesis pathway predispose prostate cancer patients to develop metastatic disease

    Get PDF
    Background Prostate cancer (PrCa) demonstrates a heterogeneous clinical presentation ranging from largely indolent to lethal. We sought to identify a signature of rare inherited variants that distinguishes between these two extreme phenotypes. Methods We sequenced germline whole exomes from 139 aggressive (metastatic, age of diagnosis < 60) and 141 non-aggressive (low clinical grade, age of diagnosis ≥60) PrCa cases. We conducted rare variant association analyses at gene and gene set levels using SKAT and Bayesian risk index techniques. GO term enrichment analysis was performed for genes with the highest differential burden of rare disruptive variants. Results Protein truncating variants (PTVs) in specific DNA repair genes were significantly overrepresented among patients with the aggressive phenotype, with BRCA2, ATM and NBN the most frequently mutated genes. Differential burden of rare variants was identified between metastatic and non-aggressive cases for several genes implicated in angiogenesis, conferring both deleterious and protective effects. Conclusions Inherited PTVs in several DNA repair genes distinguish aggressive from non-aggressive PrCa cases. Furthermore, inherited variants in genes with roles in angiogenesis may be potential predictors for risk of metastases. If validated in a larger dataset, these findings have potential for future clinical application

    Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants

    Get PDF
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Peer reviewe

    Rare Germline Variants in ATM Predispose to Prostate Cancer: A PRACTICAL Consortium Study

    Get PDF
    Background: Germline ATM mutations are suggested to contribute to predisposition to prostate cancer (PrCa). Previous studies have had inadequate power to estimate variant effect sizes.Objective: To precisely estimate the contribution of germline ATM mutations to PrCa risk.Design, setting, and participants: A We analysed next-generation sequencing data from 13 PRACTICAL study groups comprising 5560 cases and 3353 controls of European ancestry.Outcome measurements and statistical analysis: Variant Call Format files were harmonised, annotated for rare ATM variants, and classified as tier 1 (likely pathogenic) or tier 2 (potentially deleterious). Associations with overall PrCa risk and clinical subtypes were estimated.Results and limitations: PrCa risk was higher in carriers of a tier 1 germline ATM variant, with an overall odds ratio (OR) of 4.4 (95% confidence interval [CI]: 2.0-9.5). There was also evidence that PrCa cases with younger age at diagnosis (<65 yr) had elevated tier 1 variant frequencies (p(difference) = 0.04). Tier 2 variants were also associated with PrCa risk, with an OR of 1.4 (95% CI: 1.1-1.7).Conclusions: Carriers of pathogenic ATM variants have an elevated risk of developing PrCa and are at an increased risk for earlier-onset disease presentation. These results provide information for counselling of men and their families.Patient summary: In this study, we estimated that men who inherit a likely pathogenic mutation in the ATM gene had an approximately a fourfold risk of developing prostate cancer. In addition, they are likely to develop the disease earlier. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of European Association of Urology

    Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants.

    Get PDF
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling
    corecore