906 research outputs found

    Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies

    Get PDF
    Aerosols are known to influence significantly the radiative budget of the Earth. Although the direct effect (whereby aerosols scatter and absorb solar and thermal infrared radiation) has a large perturbing influence on the radiation budget, the indirect effect (whereby aerosols modify the microphysical and hence the radiative properties and amounts of clouds) poses a greater challenge to climate modellers. This is because aerosols undergo chemical and physical changes while in the atmosphere, notably within clouds, and are removed largely by precipitation. The way in which aerosols are processed by clouds depends on the type, abundance and the mixing state of the aerosols concerned. A parametrization with sulphate and sea-salt aerosol has been successfully integrated within the Hadley Centre general circulation model (GCM). The results of this combined parametrization indicate a significantly reduced role, compared with previous estimates, for sulphate aerosol in cloud droplet nucleation and, consequently, in indirect radiative forcing. However, in this bicomponent system, the cloud droplet number concentration, Nd (a crucial parameter that is used in GCMs for radiative transfer calculations), is a smoothly varying function of the sulphate aerosol loading. Apart from sea-salt and sulphate aerosol particles, biomass aerosol particles are also present widely in the troposphere. We find that biomass smoke can significantly perturb the activation and growth of both sulphate and sea-salt particles. For a fixed salt loading, Nd increases linearly with modest increases in sulphate and smoke masses, but significant nonlinearities are observed at higher non-sea-salt mass loadings. This non-intuitive Nd variation poses a fresh challenge to climate modellers

    The Value of Information for Populations in Varying Environments

    Full text link
    The notion of information pervades informal descriptions of biological systems, but formal treatments face the problem of defining a quantitative measure of information rooted in a concept of fitness, which is itself an elusive notion. Here, we present a model of population dynamics where this problem is amenable to a mathematical analysis. In the limit where any information about future environmental variations is common to the members of the population, our model is equivalent to known models of financial investment. In this case, the population can be interpreted as a portfolio of financial assets and previous analyses have shown that a key quantity of Shannon's communication theory, the mutual information, sets a fundamental limit on the value of information. We show that this bound can be violated when accounting for features that are irrelevant in finance but inherent to biological systems, such as the stochasticity present at the individual level. This leads us to generalize the measures of uncertainty and information usually encountered in information theory

    Quality bounds for binary tomography with arbitrary projection matrices

    Get PDF
    Binary tomography deals with the problem of reconstructing a binary image from a set of its projections. The problem of finding binary solutions of underdetermined linear systems is, in general, very difficult and many such solutions may exist. In a previous paper we developed error bounds on differences between solutions of binary tomography problems restricted to projection models where the corresponding matrix has constant column sums. In this paper, we present a series of computable bounds that can be used with any projection model. In fact, th

    Phase separating binary fluids under oscillatory shear

    Full text link
    We apply lattice Boltzmann methods to study the segregation of binary fluid mixtures under oscillatory shear flow in two dimensions. The algorithm allows to simulate systems whose dynamics is described by the Navier-Stokes and the convection-diffusion equations. The interplay between several time scales produces a rich and complex phenomenology. We investigate the effects of different oscillation frequencies and viscosities on the morphology of the phase separating domains. We find that at high frequencies the evolution is almost isotropic with growth exponents 2/3 and 1/3 in the inertial (low viscosity) and diffusive (high viscosity) regimes, respectively. When the period of the applied shear flow becomes of the same order of the relaxation time TRT_R of the shear velocity profile, anisotropic effects are clearly observable. In correspondence with non-linear patterns for the velocity profiles, we find configurations where lamellar order close to the walls coexists with isotropic domains in the middle of the system. For particular values of frequency and viscosity it can also happen that the convective effects induced by the oscillations cause an interruption or a slowing of the segregation process, as found in some experiments. Finally, at very low frequencies, the morphology of domains is characterized by lamellar order everywhere in the system resembling what happens in the case with steady shear.Comment: 1 table and 12 figures in .gif forma

    The mental health expert patient: findings from a pilot study of a generic chronic condition self-management programme for people with mental illness

    Get PDF
    Author version made available in accordance with the publisher's policyBackground Less than optimal outcomes and escalating costs for chronic conditions including mental illness have prompted calls for innovative approaches to chronic illness management. Aims This study aimed to test the feasibility and utility of combining a generic, clinician administered and peer-led self-management group approach for people with serious mental illness. Method General practitioners and mental health case managers used a patient-centered care model (the Flinders Model) to assist 38 patients with serious mental illness to identify their self-management needs, and match these with interventions including Stanford peer-led, self-management groups and one-to-one peer support. Self-management and quality of life outcomes were measured and qualitative evaluation elicited feedback from all participants. Results Collaborative care planning, combined with a problems and goals focused approach, resulted in improved self-management and mental functioning at 3 to 6 months follow up. The Stanford self-management course was applicable and acceptable to patients with serious mental illnesses. Qualitative feedback was highly supportive of this approach. Conclusions Generic, structured assessment and care planning approaches, resulting in self-management education targeted to the individual, improved self-management and quality of life. Patients and service providers reported considerable gains despite the challenges associated with introducing a generic model within the mental health and general practice sector

    The mental health expert patient: findings from a pilot study of a generic chronic condition self-management programme for people with mental illness

    Get PDF
    Author version made available in accordance with the publisher's policyBackground Less than optimal outcomes and escalating costs for chronic conditions including mental illness have prompted calls for innovative approaches to chronic illness management. Aims This study aimed to test the feasibility and utility of combining a generic, clinician administered and peer-led self-management group approach for people with serious mental illness. Method General practitioners and mental health case managers used a patient-centered care model (the Flinders Model) to assist 38 patients with serious mental illness to identify their self-management needs, and match these with interventions including Stanford peer-led, self-management groups and one-to-one peer support. Self-management and quality of life outcomes were measured and qualitative evaluation elicited feedback from all participants. Results Collaborative care planning, combined with a problems and goals focused approach, resulted in improved self-management and mental functioning at 3 to 6 months follow up. The Stanford self-management course was applicable and acceptable to patients with serious mental illnesses. Qualitative feedback was highly supportive of this approach. Conclusions Generic, structured assessment and care planning approaches, resulting in self-management education targeted to the individual, improved self-management and quality of life. Patients and service providers reported considerable gains despite the challenges associated with introducing a generic model within the mental health and general practice sector

    First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons

    Full text link
    We report the first observation of Z/gamma* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e- to e+e-Z/gamma*, where one of the final state electrons is undetected. Approximately 55 pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/gamma* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/gamma* branching ratio to hadrons to be (0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)egamma* production, this product is found to be (4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters

    On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes

    Get PDF
    The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN models, as briefly reviewed in this paper. The source stacking search for neutrinos from generic AGN classes is illustrated using the data collected by the AMANDA-II high energy neutrino detector during the year 2000. No significant excess for any of the suggested groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic

    Measurement of the Michel Parameters in Leptonic Tau Decays

    Get PDF
    The Michel parameters of the leptonic tau decays are measured using the OPAL detector at LEP. The Michel parameters are extracted from the energy spectra of the charged decay leptons and from their energy-energy correlations. A new method involving a global likelihood fit of Monte Carlo generated events with complete detector simulation and background treatment has been applied to the data recorded at center-of-mass energies close to sqrt(s) = M(Z) corresponding to an integrated luminosity of 155 pb-1 during the years 1990 to 1995. If e-mu universality is assumed and inferring the tau polarization from neutral current data, the measured Michel parameters are extracted. Limits on non-standard coupling constants and on the masses of new gauge bosons are obtained. The results are in agreement with the V-A prediction of the Standard Model.Comment: 32 pages, LaTeX, 9 eps figures included, submitted to the European Physical Journal
    corecore