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a b s t r a c t

Binary tomography deals with the problem of reconstructing a binary image from a set of
its projections. The problem of finding binary solutions of underdetermined linear systems
is, in general, very difficult and many such solutions may exist. In a previous paper we
developed error bounds on differences between solutions of binary tomography problems
restricted to projection models where the corresponding matrix has constant column
sums. In this paper, we present a series of computable bounds that can be used with any
projection model. In fact, the study presented here is not restricted to tomography and
works for more general linear systems.

We report the results of computational experiments for some phantom images, focused
on parallel and fan beam projection models. Our results show that in some cases the
computed bounds can be used to prove that the difference between binary solutions must
be small, even if the corresponding linear system is severely underdetermined.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Binary tomography deals with the problem of reconstructing a binary image from its projections [11]. Projection images
of an object are typically recorded using a scanning device, which employs a beam that is transmitted through the object
(e.g. photons, electrons). An array of detectors records the beam intensity after the beam–object interaction, resulting in
a projection of the object. Due to dose constraints or geometrical constraints on the angles for which projections can
be acquired, the set of angles for which projections are acquired is often limited [9,13]. By exploiting the fact that the
reconstructed image must be binary, it is often possible to compute useful reconstructions even if just a few projections are
available [11]. However, such underdetermined binary tomography problems can have a large number of binary solutions,
making it important to have a quality measure for the reconstruction with respect to the unknown original image.

The reconstruction problem can be modeled as a system of linear equations. The matrix that encodes these equations is
known as the projection matrix. Depending on the particular type of tomography problem, different models can be used to
define the projectionmatrix. In the grid model, which is a commonmodel in discrete tomography [10,11], an image is formed
by assigning a value to each point in a regular grid. In the line model and the strip model, onemodels a continuous image that
is approximated on a grid of pixels having a constant gray value within each pixel. The results in this paper are restricted to
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binary tomography, but are not restricted to any particular projection model. The approach can be used for the grid model,
but also for projection models used in continuous tomography, as will be further detailed in Section 7.1.

Our results are somewhat related to the stability problem in discrete tomography, which has been studied by several
authors [1–3,8,15–17] for the grid model. The stability problem deals with the question whether a small perturbation of the
observed data results in a small perturbation of the reconstruction. In our work, we deal with the problem how large the
difference can be between binary solutions of a reconstruction problem, i.e. binary images that have identical projections.

Recently, quite general results were obtained allowing the computation of error bounds between images in binary
tomography for any number of projection angles. In [18], a method is presented for computing bounds on the maximum
distance between binary solution of tomography problems defined on a discrete grid. Related bounds for more general
projection models are derived in [5]. Although in the latter article the tomography problem is presented in a general setting
of a linear system of equations, the approach is limited to projection models for which the associated projection matrix
has constant column sums (i.e. identical sums for all columns). The property of constant column sums holds in particular
cases (e.g. the strip model for parallel beam tomography), but limits the application of the results to restricted cases (see
Section 7.1 for projection models that do not satisfy this assumption). Although the bounds can still be approximated if this
assumption is not completely satisfied, it is then no longer clear if they really provide a quality guarantee.

In this article, we derive error bounds that are more general than those in [5], as they can be applied to basically any
problem modeled as an underdetermined algebraic linear system of equations. In particular, all relevant models of binary
tomography fit within our generalized problem setting. Our generalization of the results from [5] is not at all automatic. New
concepts andproofs are introduced to overcome thedependency on constant column sums, paving theway towards practical
error bounds for binary tomography, which can be used, for example, when using a cone-beam projection model [20] or in
the case of truncated projection data [19].

Although our focus is on tomography, our results aremore general.We therefore consider the following general problem,
of finding a binary vector that satisfies

Ax = b, (1)
a consistent and underdetermined linear system of algebraic equations with A = (aij) ∈ Rm×n, m < n, the vector of
unknowns x = (xj) ∈ Rn and the right-hand side b = (bi) ∈ Rm.

Finding a binary solution of Eq. (1) is often a very difficult problem and several binary solutions may exist. A given binary
solution does not have to be close to another binary solution. In practice, the right hand side vector b is often obtained from
an original binary vector x by a certain measurement procedure, modeled as the matrix A. For a given measurement vector
b, it is unlikely that all binary solutions are representative solutions of the specific problem which yielded b, since some
solutions of Eq. (1) may be meaningless for physical problems. In such cases, it can be important to know how different
these solutions can be. If one can give a bound on the maximum difference between two solutions, this also bounds the
maximum difference between the ground truth vector (i.e., fromwhich the vector of measured data bwas obtained) and any
other solution.

This article is structured as follows. In Section 2, we establish the notation which will be used throughout this article.
In Section 3, different versions of bounds on the Euclidean norm of binary solutions are introduced. In Section 4, a general
bound is derived on the difference between two binary solutions. Section 5 deals with bounds that are based on properties
of the binary vectors that are obtained by rounding the minimum norm solution. These bounds are refined with a different
approach in Section 6. Section 7 presents a series of simulation experiments for fan and parallel beam binary tomography
and their results. From these results, the practical value of the proposed bounds can be evaluated for different kinds of
problems. Section 8 concludes the article.

2. Notation and the minimum norm solution

For a given matrix A and given right-hand side b, let SA(b) = {x ∈ Rn
: Ax = b}, the set of all real-valued solutions

corresponding with the given data. A binary vector corresponds with a vector x̄ ∈ {0, 1}n. Let S̄A(b) = SA(b) ∩ {0, 1}n, the
set of binary solutions of the system.

Throughout this article, we use the vector 0t ∈ Rt (for an integer t > 0), to denote a column vector consisting of t 0’s,
the vector 1t ∈ Rt to denote a column vector consisting of t 1’s and the identity matrix It ∈ Rt×t . However, we often use the
vectors 0 and 1 and the identity matrix I without specifying their dimension, as it does not compromise the understanding
and clarity of the proofs.

For any two vectors ū, v̄ ∈ {0, 1}n, define the difference set D(ū, v̄) = {i : ūi ≠ v̄i} and the number of differences
d(ū, v̄) = #D(ū, v̄), where the symbol # denotes the cardinality operator for a finite set. Note that d(ū, v̄) = ∥ū − v̄∥1.

For the following sections, consider the problem of finding a binary solution of a fixed linear system Ax = b called the
binary solution problem.

As the matrix A is not a square matrix, and may not have full rank, it does not have an inverse. Recall that the
Moore–Penrose pseudo-inverse of an m × n matrix A is an n × m matrix AĎ, which can be uniquely characterized by the
two geometric conditions

AĎb ⊥ N (A) and (I − AAĎ)b ⊥ C(A), ∀b ∈ Rm,

where N (A) is the nullspace of A and C(A) is the column space of A [7, p. 15].
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Let x∗
= AĎb. Then x∗ also has the property (see Chapter 3 of [6]) that it is a real-valued solution of minimal Euclidean

norm of the system Ax = b, provided that such a solution exists. Theminimum norm solution plays an important role in the
bounds we will derive for the binary solution problem. Several methods are available for the computation of the minimum
norm solutions. One approach is computing the QR decomposition of AT , see [4] for details. However, in several cases an
iterative method, such as CGLS [14], is more suitable.

3. The Euclidean norm of binary solutions

The bounds on the difference between binary solutions that will be introduced in the upcoming sections are functions of
the Euclidean norm of the solutions of the binary solution problem (1). In this section we present lower and upper bounds
on the Euclidean norm (also referred to as length) of all binary solutions of the equation system (1).

If the matrix A has constant column sum k, the length of any binary solution can be determined directly from the data
b [5]. Let x̄ ∈ {0, 1}n and b = Ax̄. Then

m
i=1

bi = 1T
mb = 1T

mAx̄ = k1T
n x̄ = k

n
j=1

x̄j

and hence ∥x̄∥2
2 =

n
j=1 bi
k . This result also proves that if there is more than one binary vector satisfying Ax = b, all of them

have the same length. However, if the matrix A does not have the property of constant column sums, the binary solutions
of problem (1) may differ in length.

There are cases in which the matrix A almost has the property of constant column sums except for a very small
discrepancy. It happens, for instance, due to numerical approximations. For such cases, there is a trivial way to obtain upper
and lower bounds for the length of any binary solution, provided that a few conditions on b and A are satisfied:

Theorem 1. Let
m

i=1 bi ≥ 0, x̄ ∈ S̄A(b) and put vT
= 1TA. Define δ+

= max1≤i≤n vi and δ−
= min1≤i≤n vi, the maximum

and the minimum column sums of A, respectively. Suppose that δ− > 0. Then
m

i=1 bi
δ+


≤ ∥x̄∥2

2 ≤

m
i=1 bi
δ−


.

Proof.
m
i=1

bi = 1Tb = 1TAx̄ = vT x̄ =

n
j=1

vjx̄j, (2)

and therefore
m
i=1

bi

δ+
≤

n
j=1

x̄j ≤

m
i=1

bi

δ−
. (3)

As x̄ ∈ {0, 1}n, we have ∥x̄∥2
2 = ∥x̄∥1 =

n
j=1 x̄j and

m
i=1

bi

δ+

 ≤ ∥x̄∥2
2 ≤


m
i=1

bi

δ−

 . � (4)

However, if the difference
m

i=1 bi
δ−


−

m
i=1 bi
δ+


is not very small, the bounds computed by Theorem 1 can be very

different from the length of a binary solution x̄.
The bounds given in Theorem 1 are trivial to compute, but we note that better bounds can be obtained if the statement

of the theorem is generalized to a linear programming (LP) formulation. In particular, for any y ∈ Rm such that yTA ≥ 1T ,
we have yTAx̄ = yTb ≥ 1T x̄ = ∥x̄∥1 (where the logical operator ≥ operates element-wise). Using linear programming to
find the minimal such upper bound for which yTA ≥ 1 can provide a tighter bound on ∥x̄∥1 at the expense of significant
computational cost. In tomography problems, A is typically very large (i.e. > 104 rows and columns), making linear
programming a complex numerical problem, though it is theoretically tractable. In this paper, we aim to provide bounds
that are relatively easy to compute, so we do not explore this direction further.

In the following theorems, we introduce more elaborate bounds on the length of any binary solution, which will be used
in the remainder of this article. These bounds are computable by solving a linear system of equations (possibly iteratively)
and do not require a linear programming algorithm.

Lemma 2. Let x̄ ∈ S̄A(b), x∗
= AĎb and eT = 1T (I − AĎA). Then ∥x̄∥2

2 = 1Tx∗
+ eT x̄.
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Proof. Let yT
LS = 1TAĎ be the transpose of the minimum norm least squares solution of the linear system ATy = 1. We have

ATyLS = 1 − e,

with e = 1−ATyLS = (I −AĎA)T1, the residual. Note that in the case of constant column sums we have e = 0, and this also
holds in the more general case where 1 is in the row space of A.

Left-multiplying the equality Ax̄ = b by the vector yT
LS , we obtain

yT
LSAx̄ = (1T

− eT )x̄ = yT
LSb,

which yields

1T x̄ = yT
LSb + eT x̄

= 1Tx∗
+ eT x̄.

Since x̄ ∈ {0, 1}n, we have 1T x̄ = ∥x̄∥1 = ∥x̄∥2
2. �

Lemma 2 can be interpreted as follows: any solution of the underdetermined problem (1) can be written as the sum of a
vector orthogonal to N (A) (i.e., the minimum norm solution) and the orthogonal projection of itself onto N (A). Hence, the
sum of the elements of a solution is equal to the sum of the elements of the minimum norm solution plus the sum of the
elements of the orthogonal projection of this solution onto the null space of A. The orthogonal projector onto N (A) is given
by P = (I − AĎA).

Define eT = 1T (I −AĎA), a correction vector, which will be frequently used throughout this article. Note that in Lemma 2
we focus on the vector yLS , whereas other vectors y could be used instead, possibly leading to tighter bounds. Similar to
Theorem 1, our choice results in bounds that are straightforward to compute, whereas the introduction of an optimization
approach could potentially yield improved bounds at the expense of computational complexity and cost.

Lemma 2 states that ∥x̄∥2
2 = 1Tx∗

+ eT x̄, which cannot be computed exactly without knowing x̄. However, it is possible
to bound ∥x̄∥2

2 as follows:

Theorem 3. Let x̄ ∈ S̄A(b) and x∗
= AĎb. Then1Tx∗

+


i∈{j:ej<0}

ei

 ≤ ∥x̄∥1 ≤

1Tx∗
+


i∈{j:ej>0}

ei

 .

Proof. By Lemma 2, we have ∥x̄∥2
2 = 1Tx∗

+ eT x̄, allowing ∥x̄∥2
2 to be bounded as

1Tx∗
+

n
i=1

min
ȳi∈{0,1}

eiȳi ≤ ∥x̄∥2
2 ≤ 1Tx∗

+

n
i=1

max
ȳi∈{0,1}

eiȳi, (5)

resulting in

1Tx∗

+


i∈{j:ej<0} ei


≤ ∥x̄∥2
2 ≤


1Tx∗

+


i∈{j:ej>0} ei

, as desired. �

The bounds given in Theorem 3 are based on the idea of implicitly selecting binary vectors to minimize or maximize the
sum of the elements of the correction vector e. However, this approach does not consider using the number of ones of these
binary vectors to bound the length of the binary solutions.

Let ρ be a permutation of {1, . . . , n} such that eρ(1) ≥ eρ(2) ≥ · · · ≥ eρ(n), which can be obtained by sorting the entries
ei in non-increasing order. We recall that ei can also be negative.

Theorem 4. Let x̄ ∈ S̄A(b) \ {0, 1}. Suppose that 1Tx∗
+ eT1 < n. There is a unique 1 ≤ ℓ < n such that

(C1) ℓ + 1 > 1Tx∗
+

ℓ+1
j=1

eρ(j) and

(C2) ℓ ≤ 1Tx∗
+

ℓ
j=1

eρ(j).

For this ℓ, we have ∥x̄∥1 = ∥x̄∥2
2 ≤ ℓ.

Proof. From Lemma 2, we have

∥x̄∥1 = 1Tx∗
+ eT x̄ = 1Tx∗

+

n
i=1

eix̄i = 1Tx∗
+


i∈{j:x̄j=1}

ei ≤ 1Tx∗
+

∥x̄∥1
i=1

eρ(i). (6)
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Consider the concave function f (ℓ) = 1Tx∗
+

ℓ
i=1 eρ(i) and the function g(ℓ) = ℓ, for ℓ = 1, . . . , n. From Eq. (6), we know

that g(∥x̄∥1) ≤ f (∥x̄∥1), and from the assumption of the Theorem, we have f (n) = 1Tx∗
+ eT1 < n = g(n).

As we want an upper bound for ∥x̄∥1, we now try to find the largest value of ℓ for which g(ℓ) ≤ f (ℓ). We distinguish the
following cases:

1. g(ℓ) > f (ℓ) for all ℓ = 1, . . . , n. Then there is no ℓ satisfying condition (C2), therefore this case cannot occur.
2. g(ℓ) ≤ f (ℓ) for ℓ = 1, . . . , s and g(ℓ) > f (ℓ) for ℓ = s+ 1, . . . , n. Then (C1) and (C2) are jointly satisfied only for ℓ = s.
3. g(ℓ) > f (ℓ) for ℓ = 1, . . . , t − 1; g(ℓ) ≤ f (ℓ) for ℓ = t, . . . , s; g(ℓ) > f (ℓ) for ℓ = s + 1, . . . , n. Then (C1) and (C2) are

jointly satisfied only for ℓ = s.

If g(ℓ) < f (ℓ) for all ℓ = 1, . . . , n−1, then 1Tx∗
+ eT1 ≮ n, which does not satisfy the assumptions of the Theorem. �

Example 5. Consider the linear system of equations Ax = b with the set of binary solutions S̄A(b) = {x̄(1), x̄(2), x̄(3)
} such

that

A =


1 1 0 1 0
0 1 1 0 1


, b =


2
1


, x̄(1)

=


0
1
0
1
0

 , x̄(2)
=


1
1
0
0
0

 and x̄(3)
=


1
0
1
1
0

 .

In order to apply Theorem 4 and obtain an upper bound on the Euclidean norm of any binary solution of the given linear
system, the correction vector e = (I − AĎA)T1 must be computed. The explicit computation of the pseudo-inverse AĎ

is not necessary, as indicated in the proof of Lemma 2. Hence, we have eT =

0.25 −0.5 0.25 0.25 0.25


and

x∗T
=


0.625 0.75 0.125 0.625 0.125


.

We check the conditions (C1) and (C2) of Theorem 4 for 0 ≤ ℓ < 5, and find that they are satisfied only for ℓ = 3:

4 > 1Tx∗
+

4
i=1

eρ(i) = 2.25 + 1 = 3.25 and 3 ≤ 1Tx∗
+

3
i=1

eρ(i) = 2.25 + 0.75 = 3

which gives, for any x̄ ∈ S̄W (p), ∥x̄∥2
2 ≤ 3.

4. A bound based on the minimum norm solution

In this section, a first bound is derived on the distance between solutions of the binary reconstruction problem, which
follows from the fact that the Euclidean distance between the minimum norm solution and any binary solution of Eq. (1)
can be bounded by an expression based on the minimum norm solution and the elements of the correction vector. Similar
bounds, but for a more restricted setting, are given in [18,5].

Lemma 6. Let x̄ ∈ S̄A(b). Then ∥x̄ − x∗
∥2 =


∥x̄∥2

2 − ∥x∗∥
2
2.

Proof. From the definition of x∗ we have (x̄− x∗) ∈ N (A), and x∗
⊥ (x̄− x∗). Applying Pythagoras’ Theorem and Lemma 2

yields

∥x̄ − x∗
∥
2
2 = ∥x̄∥2

2 − ∥x∗
∥
2
2. � (7)

For x̄ ∈ S̄A(b), define RA,b(x̄) =


∥x̄∥2

2 − ∥x∗∥
2
2. We refer to RA,b(x̄) as the central radius of x̄. According to Lemma 6,

any binary solution x̄ of problem (1) is on the hypersphere centered in x∗ with radius RA,b(x̄). Notice that different binary
solutions of problem (1) may lie on different hyperspheres.

Some of the results in the remainder of this article require a definition of the central radius that is also valid for
x̄ ∈ {0, 1}n that are not in the solution set of Ax = b. We therefore introduce the more general definition RA,b(x̄) =
1Tx∗ + eT x̄ − ∥x∗∥

2
2. Notice that if x̄ ∈ S̄A(b), both definitions are equivalent.

In further theorems, we are interested in computing R ∈ R such that R ≥ RA,b(x̄) for all x̄ ∈ S̄A(b), i.e, we want an
upper bound for all RA,b(x̄) with x̄ ∈ S̄A(b). To this end, the bound R can be computed by Lemma 6 combined either with
Theorems 1, 3 or 4. If we also consider the lower bound from Theorem 3 (or 1), we obtain two radii defining a spherical shell
centered in x∗ containing all binary solutions.

Supposing the existence of at least two different binary solutions, the upper bound R of the central radius allows us to
derive an upper bound for the number of entry differences between those solutions.

Theorem 7. Let x̄, ȳ ∈ S̄A(b) and R ≥ RA,b(ū), for all ū ∈ S̄A(b). Then d(x̄, ȳ) ≤ 4R2.
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Proof. According to Lemma 6, we have ∥x̄ − x∗
∥2 = RA,b(x̄) and ∥ȳ − x∗

∥2 = RA,b(ȳ). Therefore,

∥x̄ − ȳ∥2 ≤ ∥x̄ − x∗
∥2 + ∥ȳ − x∗

∥2 = RA,b(x̄) + RA,b(ȳ) ≤ 2R. (8)

As x̄ and ȳ are binary, we have d(x̄, ȳ) = ∥x̄ − ȳ∥1 = ∥x̄ − ȳ∥2
2. �

5. Bounds based on rounding the minimum norm solution

In this section we repeat several results of [5] (without their proof), which can be extended to the case of non-constant
column sums of the projection matrix, simply by using an upper bound on the central radius instead of using the exact
central radius (as in [5]). In the experiments of Section 7, these bounds will be compared to the new bounds introduced in
Section 6. The results of this section are expressed as theorems and are illustrated by an example.

The fact that the elements of S̄A(b) surround the minimum norm solution x∗, suggests that binary solutions can often
be found near x∗. It is therefore natural to consider the vector that is obtained by rounding each entry of x∗ to the nearest
binary value. The following bounds are based on the number of differences between a binary solution of problem (1) and a
binary vector obtained by rounding x∗.

Let T = {w̄ ∈ {0, 1}n : ∥w̄ − x∗
∥2 ≤ ∥ū − x∗

∥2, for all ū ∈ {0, 1}n}. Note that the elements of T correspond to the
possible pixel-wise roundings of x∗ to binary values. If none of the entries of x∗ equals 1

2 , T contains a single element and
the number of elements is doubled for each occurrence of 1

2 . Let r̄ ∈ T , i.e., r̄ is among the binary vectors that are nearest
to x∗ in the Euclidean sense. Put T = ∥r̄ − x∗

∥2, i.e., the Euclidean distance from x∗ to the nearest binary vector. If R > T
and R − T is small, it is possible to say that a fraction of the rounded values are correct, i.e., to provide an upper bound on
the number of entry differences between any solution in S̄A(b) and r̄ . In most cases we cannot saywhich rounded values are
correct.

For the next Lemma, recall that D(ū, v̄) = {i : ūi ≠ v̄i}.

Lemma 8. Let r̄ ∈ T and x̄ ∈ S̄A(b). Then R2
A,b(x̄) − T 2

=


i∈D(x̄,r̄) |2x∗

i − 1|.

Define βi = |2x∗

i − 1| and let π be a permutation of {1, . . . , n} such that βπ(1) ≤ βπ(2) ≤ · · · ≤ βπ(n), which can be
obtained by sorting the entries βi in increasing order.

Theorem 9. Let r̄ ∈ T and R ≥ RA,b(ū), for all ū ∈ S̄A(b). Put

U = max


0 ≤ ℓ ≤ n :

ℓ
i=1

βπ(i) ≤ R2
− T 2


.

Then for any x̄ ∈ S̄A(b), we have d(r̄, x̄) ≤ U.

Theorem 9 is based in the following: consider the set of entries where r̄ and x̄ are different. If we transform r̄ into x̄ by
performing a sequence of single-entry changes (either from 0 to 1, or from 1 to 0), each time an entry i of r̄ is changed the
squared Euclidean distance from the current vector to x∗ increases by βi = |2x∗

i − 1|. As all binary solutions of problem (1)
are on hyperspheres centered in x∗ with radius smaller or equal than R (computed, e.g., by Theorem 4), we know that once
we have crossed the boundary of the hypersphere with radius R, a binary solution can no longer be obtained by changing
the values of additional entries that have not yet been changed. An upper bound on the number of differences between r̄
and x̄ can be obtained by counting the number of steps required to cross the hypersphere, each time choosing a pixel which
results in the minimal increase in the relative distance to the boundary.

Example 10. Using the same data as given in Example 5, we compute

x∗
=


0.65
0.75
0.125
0.625
0.125

 , r̄ =


1
1
0
1
0

 , β =


0.25
0.5
0.75
0.25
0.75

 and βπ =


0.25
0.25
0.5
0.75
0.75

 ,

where r̄ is obtained by rounding the entries of x∗ to binary values. Then, we compute T 2
= ∥r̄ − x∗

∥
2
2 = 0.375 and, from

Lemma 6 and Example 5, R2
= 1.625 ≥ ∥x̄∥2

2 − ∥x∗
∥
2
2.

Applying Theorem 9, we verify, for 0 ≤ ℓ ≤ 5, that

3
i=0

βπ(i) = 1 ≤ 1.25 = R2
− T 2 and

4
i=0

βπ(i) = 1.75 ≰ 1.25 = R2
− T 2.

Then for any x̄ ∈ S̄A(b), we have d(r̄, x̄) ≤ 3.
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Theorem 11. Let x̄, ȳ ∈ S̄A(b), r̄ ∈ T and R ≥ RA,b(ū), for all ū ∈ S̄A(b). Put

U = max


0 ≤ ℓ ≤ n :

ℓ
i=1

βπ(i) ≤ 2

R2

− T 2 .

Then d(x̄, ȳ) ≤ U.

6. Bounds based on a subsequent radius reduction

In this section we do not use the upper bound for the length of binary solutions given by Theorems 1 or 4, but the one
from Theorem3 only. Recall from the proof of Theorem3 that a binary vector z̄ can be constructed (not necessarily a solution
of the binary solution problem), whichmaximizes the central radius, i.e., z̄ ∈ {w̄ ∈ {0, 1}n : RA,b(w̄) ≥ RA,b(ū), for all ū ∈

{0, 1}n}. After computing the largest central radius RA,b(z̄), a radius reduction is performed based on a function depending
on the correction vector e and the binary vector r̄ closest to the minimum norm solution x∗ (the center of the hypersphere
containing all binary solutions). For the next theorems, recall that eT = 1T (I − AĎA) and T = ∥r̄ − x∗

∥2.

Lemma 12. Let x̄, ȳ ∈ {0, 1}n. Then, R2
A,b(x̄) = R2

A,b(ȳ) −
n

i=1 ei(ȳi − x̄i).

Proof. As R2
A,b(x̄) = 1Tx∗

+ eT x̄ − ∥x∗
∥
2
2 and R2

A,b(ȳ) = 1Tx∗
+ eT ȳ − ∥x∗

∥
2
2, we have

R2
A,b(ȳ) − R2

A,b(x̄) = eT (ȳ − x̄).

Hence, R2
A,b(x̄) = R2

A,b(ȳ) −
n

i=1 ei(ȳi − x̄i). �

Lemma 13. Let x̄ ∈ S̄A(b), r̄ ∈ T and z̄ ∈ {w̄ ∈ {0, 1}n : RA,b(w̄) ≥ RA,b(ū), for all ū ∈ {0, 1}n}. Put α̂i = ei(z̄i − x̄i), for
i = 1, . . . , n. Then

R2
A,b(z̄) − T 2

≥


i∈D(r̄,x̄)

(α̂i + βi).

Proof. From Lemma 6, we have ∥x̄ − x∗
∥
2
2 = R2

A,b(x̄). Applying Lemma 8, we find that

R2
A,b(x̄) − T 2

= RA,b(z̄) −

n
i=1

α̂i − T 2
=


i∈D(r̄,x̄)

βi.

It is straightforward to check that α̂i ≥ 0 and


i∈{j:xj=zj}
α̂i = 0. Hence we have

R2
A,b(z̄) − T 2

=

n
i=1

α̂i +


i∈D(r̄,x̄)

βi

=


i∈D(x̄,z̄)


D(r̄,x̄)

α̂i +


i∈D(r̄,x̄)

βi

≥


i∈D(r̄,x̄)

(α̂i + βi). �

Lemma 14. Let x̄ ∈ S̄A(b), r̄ ∈ T and αi = ei(z̄i − |r̄i − 1|), for i = 1, . . . , n. Then

R2
A,b(z̄) − T 2

≥


i∈D(r̄,x̄)

(αi + βi).

Proof. By the definition of α,

αi = ei(z̄i − |r̄i − 1|) = ei(z̄i − x̄i) = α̂i, for all i ∈ D(x̄, r̄). (9)

From Lemma 13 and Eq. (9), we find that

R2
A,b(z̄) − T 2

≥


i∈D(r̄,x̄)

(α̂i + βi) =


i∈D(r̄,x̄)

(αi + βi),

as desired. �

Let γi = αi + βi and φ be a permutation of {1, . . . , n} such that γφ(1) ≤ γφ(2) ≤ · · · ≤ γφ(n), which can be obtained by
sorting the entries γi in increasing order.
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Theorem 15. Let x̄ ∈ S̄A(b) and r̄ ∈ T . Define αi = ei(z̄i − |r̄i − 1|) and γi = αi + βi, for i = 1, . . . , n. Put

U = max


0 ≤ ℓ ≤ n :

ℓ
i=1

γφ(i) ≤ RA,b(z̄)2 − T 2


.

Then d(r̄, x̄) ≤ U.
Proof. From Lemma 14 we have

R2
A,b(z̄) − T 2

≥


i∈D(r̄,x̄)

(αi + βi) ≥

d(r̄,x̄)
i=1

γφ(i),

which implies that d(r̄, x̄) ≤ U . �

Theorem 15 is based on the following: consider the set of entries where r̄ and x̄ are different. If we transform r̄ into x̄
by performing a sequence of single-entry changes, each time an entry i of r̄ is changed the squared Euclidean distance from
the current vector to x∗ increases by βi = |2x∗

i − 1| and the current central radius reduces by αi = ei(z̄i − |r̄i − 1|).

Example 16. Using the same data given in Example 5, we compute R2
A,b(z̄), the largest central radius that can be obtained

by z̄ ∈ {0, 1}n, as given by Theorem 3.

z̄ =


1
0
1
1
1

 , α =


0.25
0
0

0.25
0

 , γ =


0.5
0.5
0.75
0.5
0.75

 and γφ =


0.5
0.5
0.5
0.75
0.75

 .

With R2
A,b(z̄) − T 2

= 1.875 − 0.375 = 1.5, we apply Theorem 15 and verify, for 0 ≤ ℓ ≤ 5, that

3
i=0

γφ(i) = 1.5 ≤ 1.5 and
4

i=0

γφ(i) = 2.25 ≰ 1.5.

Then for any x̄ ∈ S̄A(b), we have d(r̄, x̄) ≤ 3.

Theorem 17. Let x̄, ȳ ∈ S̄A(b) and r̄ ∈ T . Define αi = ei(z̄i − |r̄i − 1|) and γi = αi + βi, for i = 1, . . . , n. Put

U = max


0 ≤ ℓ ≤ n :

ℓ
i=1

γφ(i) ≤ 2

R2

A,b(z̄) − T 2 .

Then d(x̄, ȳ) ≤ U.
Proof. From Lemma 14 we have

2

R2

A,b(z̄) − T 2
≥


i∈D(r̄,x̄)

γi +


i∈D(r̄,ȳ)

γi =


i∈D(x̄,ȳ)

γi +


i∈D(r̄,x̄)


D(r̄,ȳ)

2γi. (10)

As γi ≥ 0, for all i = 1, . . . , n, then

2

R2

A,b(z̄) − T 2
≥


i∈D(x̄,ȳ)

γi ≥

d(x̄,ȳ)
i=1

γφ(i), (11)

which implies that d(x̄, ȳ) ≤ U . �

7. Numerical experiments

A series of experiments was performed to investigate the practical value of the bounds given in the theorems and
corollaries presented in the previous sections, where the bounds were evaluated for a range of problems. The experiments
have been performed for two basic acquisition geometries: parallel beam and fan beam tomography. All experiments are
based on simulated projection data obtained by computing the projection data from the test images (so-called phantoms) in
Fig. 1. We refer to [5] for information on the origin of these phantoms.

All phantoms have a size of 512 × 512 pixels. To perform experiments for images with varying image size (smaller than
512 × 512), the phantoms have been downscaled to obtain binary images of the appropriate sizes.

The remainder of this section is structured as follows. Brief descriptions of parallel beam tomography and fan beam
tomography are presented in Section 7.1. The quality of the bounds on the length of binary solutions is evaluated in
Section 7.2. Experimentswith bounds on the difference between binary solutions for the tomography problem are presented
in Section 7.3.
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(a) Phantom 1. (b) Phantom 2. (c) Phantom 3. (d) Phantom 4.

Fig. 1. Original phantom images used for the experiments.

(a) Parallel beam geometry. (b) Fan beam geometry.

Fig. 2. Tomography geometry.

7.1. Tomography models

Throughout the tomography literature, several imaging models have been considered [13, section 7.4.1]. The unknown
image is often approximated by an image defined on a discrete pixel grid. In parallel beam tomography, a projection is
computed by considering a set of parallel rays in a given direction and computing a weighted sum of all the pixels that
intersect with each ray, see Fig. 2(a). We select projection angles equally spaced between 0° and 180°.

In fan beam tomography, a point source emits a set of rays in all directions and an array of detectorsmeasures theweighted
sum of all the pixels that intersect with each ray, see Fig. 2(b). In our case, we assume that the detector is flat, i.e., all
measurements are performed on a detector that follows a straight line. The phantom image is centered around the point
of rotation of the source and detector. As the source and detector are positioned further away from the center of rotation,
the fan beam geometry becomes more and more similar to a parallel beam geometry. We select projection angles equally
spaced between 0° and 360°.

The intersection between a pixel and a ray can be computed in different ways, each leading to a different model for the
imaging process. A common model for computing the projections of a pixelized image is the line model. In the line model,
the weight aij, defined by the intersection between beam i and pixel j, is determined by the intersection length between the
line (beam) and the pixel, Fig. 3(a).

In parallel beam tomography, for the casewhere the projection is alignedwith the horizontal and vertical axes, theweight
function of the line model has two discontinuities. Due to floating point errors, these can easily lead to pixel weights set to
0, where in fact they should be set to 1, or vice versa. The weighting scheme introduced by Joseph [12] does not have this
drawback. Here, the weights aij are the interpolation coefficients obtained when tracing the line row by row (or column
by column, depending on the projection angle), and applying linear interpolation between the centers of the two adjacent
pixels, as shown in Fig. 3(b).

The strip model differs from the line model because the beam is a strip instead of a line. The weight aij is determined by
the intersection area between strip i and the pixel j. For both line and Joseph’s models, the column sums of their respective
projectionmatrix is not constant while it is constant for the strip model in parallel beam tomography. Despite the fact that a
projection matrix for the line model in parallel beam tomography does not have constant column sums, the variance of the
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(a) Line model. (b) Joseph’s model. (c) Strip model.

Fig. 3. Projection models.

(a) Image size: 32 × 32. (b) Image size: 64 × 64.

(c) Image size: 128 × 128.

Fig. 4. Relative ℓ1-norm of the correction vector e for the line model in parallel and fan beam tomography.

column sums is small. The line model in fan beam tomography shows stronger difference as compared with the line model
from parallel beam tomography. To show this, we have computed the correction vector e and plotted the sum of the absolute
value of its entries divided by its number of entries using four projection angles, as shown in Fig. 4. Recall that when the
projection matrix has constant column sums, the vector e is a null vector.

We will show experimental results for parallel beam tomography with the three projection models presented (line,
Joseph’s and strip). For fan beam tomography we use only the line model.

7.2. Bounds on the number of ones in binary solutions

The linear system (1) may have binary solutions with different lengths. In Section 4 we have presented different ways
of computing an upper bound for the length of any binary solution. The expressions D(1), D(2) and D(3) represent the
difference between the computed upper bound for the number of ones of any binary solution (Theorems 1, 3 and 4,
respectively) and the actual number of ones of the binary image used to construct the projections. A comparison between
these bounds is shown in Fig. 5 for Phantom 4 with size 512 × 512. Fig. 5 includes three graphs, each one for a different
parallel beam tomography model.
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(a) Strip model. (b) Line model.

(c) Joseph’s model.

Fig. 5. Absolute difference between the bound for the number of ones in any binary solution and the number of ones in the phantom.

The graph in Fig. 5(a) corresponds to the stripmodel, forwhich the projectionmatrix has the property of constant column
sums except for numerical errors. Fig. 5(b) and (c) correspond to the line and Joseph’s models.

It can be observed that for the strip model, the most basic bound is typically smaller than the other two, more refined,
bounds. However, the number of pixels by which this bound differs from the other bounds is very small compared with the
total number of pixels. The graphs for the line and Joseph’s models show that the bound given in Theorem 1 can give very
high bounds with a significant difference with respect to the other two bounds, which are close to each other. The bounds
for the line and Joseph’s model can be better visualized in Fig. 6. A comparison between these bounds is shown in Fig. 6 for
Phantom 4 with size 512 × 512 for parallel beam tomography. Fig. 6 also includes the same bounds for Phantom 4 of size
128 × 128 with the line model for fan beam tomography.

The upper bound for the number of ones in binary solutions given in Theorem 4 is computed by the intersection of two
functions. One of these functions is the linear function g(ℓ) = ℓ, which corresponds with the number of ones in a binary
solution, while the other function is a concave function, which defines an upper bound on the number of ones. An example
of a plot of these two functions can be seen in Fig. 7 for Phantom 4, using Joseph’s model. The Phantom used for Fig. 7(a) has
size 32×32 and 10 projection angles were used. For Fig. 7(b) the Phantom has size 128×128with 32 projection angles. The
results for fan beam tomography are somewhat similar to the ones of parallel beam tomography and are not shown here.
Note that the graphs of the linear function g are almost vertical, due to the scale of the plots.

From Fig. 7(a), we have 300 < f (ℓ) < 302 for 0 ≤ ℓ < n, so ∥x̄∥1 = 301. For the example in Fig. 7(b) the bound is not
exact, but it is very close to the actual number of ones (4615) of the original phantom.

There is no guarantee that increasing the number of projection angles decreases the bound for the number of ones in the
binary solutions. This implies that the bound for the number of ones can be recomputed every time a new angle is added
and the smallest selected to generate the error bounds. This has not been done in the graphs of this article.

7.3. Bounds on the difference between binary solutions and binary approximate solutions

We now focus on the computation of the actual quality bounds for solutions of the binary reconstruction problem. A
binary approximate solution is a binary vector that approximately satisfies the linear equation system Ax = b. In each
experiment, the minimum norm solution x∗ was first computed using the CGLS algorithm. For some bounds, it is necessary
to compute the rounded central reconstruction r̄ whichwas performed by rounding x∗ to the nearest binary vector, choosing
r̄i = 1 if x∗

i =
1
2 . Based on x̄ and r̄ , the various upper bounds described in Sections 3–6 were computed.

When presenting the results, we express the bounds on the pixel differences between two images as a fraction of the total
number of image pixels. This allows for more straightforward interpretation of the results than using the absolute number
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(a) Parallel beam: line model. (b) Parallel beam: Joseph’s model.

(c) Fan beam: line model.

Fig. 6. Absolute difference between the bound for the number of ones in any binary solution and the number of ones of the phantom.

(a) Phantom 4 (32 × 32), 10 projections. (b) Phantom 4 (128 × 128), 32 projections.

Fig. 7. Intersection between the two functions determines an upper bound for the length of any binary solution.

of pixel differences. As a substantial number of bounds will be given in a later part of this paper, we introduce the following
notation:

• The expressionsUd(1),Ud(2) andUd(3)will represent bounds on the number of pixel differences between any two binary
solutions of the reconstruction problem.

• The expressions Us(1) and Us(2) will represent bounds on the number of pixel differences between the rounded central
reconstruction r̄ and any binary solution.

The bounds within each class Ud and Us represent upper bounds for the same distance measure and can therefore be
compared. The expression Es denotes the number of pixel differences between the rounded central reconstruction and the
phantom.

The expressions Ud(1) is computed by using Theorem 7, Ud(2) by using Theorem 11 and Ud(3) by using Theorem 17. The
expressions Us(1) and Us(2) are computed by using Theorems 9 and 15 respectively, which use the bound on the length of
binary solutions from Theorem 4.
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(a) Phantom 1, 32 × 32. (b) Phantom 1, 128 × 128. (c) Phantom 1, 256 × 256.

(d) Phantom 2, 32 × 32. (e) Phantom 2, 128 × 128. (f) Phantom 2, 256 × 256.

(g) Phantom 3, 32 × 32. (h) Phantom 3, 128 × 128. (i) Phantom 3, 256 × 256.

(j) Phantom 4, 32 × 32. (k) Phantom 4, 128 × 128. (l) Phantom 4, 256 × 256.

Fig. 8. Parallel beam, Joseph’s model: computed Us bounds as a function of the number of projection angles.

Several graphs presented in this section use a logarithmic scale for the error bounds. In some cases, the bound may
become very small, or even 0, resulting in a point on the graph that cannot be plotted. These points are simply removed
from the plot, causing the graph to be disconnected.

7.3.1. Parallel beam tomography
Experiments have been performed based on the four phantom images, scaled to sizes of 32×32, 128×128 and 256×256

respectively, varying the number of projection directions. The first set of results are shown in Fig. 8, where boundsUs(1) and
Us(2) on the number of differences between r̄ and the phantom image x̄, and the exact error between r̄ and the phantom
image x̄ are jointly plotted. In Fig. 9, the bounds Ud(1), Ud(2) and Ud(3) on the distance between any two binary solutions



14 W. Fortes, K.J. Batenburg / Discrete Applied Mathematics ( ) –

(a) Phantom 1, 32 × 32. (b) Phantom 1, 128 × 128. (c) Phantom 1, 256 × 256.

(d) Phantom 2, 32 × 32. (e) Phantom 2, 128 × 128. (f) Phantom 2, 256 × 256.

(g) Phantom 3, 32 × 32. (h) Phantom 3, 128 × 128. (i) Phantom 3, 256 × 256.

(j) Phantom 4, 32 × 32. (k) Phantom 4, 128 × 128. (l) Phantom 4, 256 × 256.

Fig. 9. Parallel beam, Joseph’s model: computed Ud bounds as a function of the number of projection angles.

of the reconstruction problem are shown for the same experiments. For both Figs. 8 and 9 we used Joseph’s model, which
has results similar to the line model.

7.3.2. Fan beam tomography
Experiments have been performed based on the four phantom images, scaled to sizes of 32×32, 128×128 and 256×256

respectively, varying the number of projection directions. The first results are shown in Fig. 10,where boundsUs(1) andUs(2)
on the number of differences between r̄ and the phantom image x̄, and the exact error between r̄ and the phantom image
x̄ are jointly plotted. In Fig. 11, the bounds Ud(1), Ud(2) and Ud(3) on the distance between any two binary solutions of the
reconstruction problem are shown for the same experiments.
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(a) Phantom 1, 32 × 32. (b) Phantom 1, 64 × 64. (c) Phantom 1, 128 × 128.

(d) Phantom 2, 32 × 32. (e) Phantom 2, 64 × 64. (f) Phantom 2, 128 × 128.

(g) Phantom 3, 32 × 32. (h) Phantom 3, 64 × 64. (i) Phantom 3, 128 × 128.

(j) Phantom 4, 32 × 32. (k) Phantom 4, 64 × 64. (l) Phantom 4, 128 × 128.

Fig. 10. Fan beam, line model: computed Us bounds as a function of the number of projection angles.

7.4. Discussion of the results

Despite the facts that the four phantoms have strong differences in shape and morphology, and that the tomography
models are quite different, the results shown in Figs. 8–11 are consistent throughout all experiments. In general, the bounds
become smaller as the number of projection angles is increased.

From the difference between the bounds based on Section 4 and the bounds based on the rounded central reconstruction,
we see that in most cases the phantom x̄ is substantially closer to r̄ than to x∗.

In Figs. 8 and 10, it can be observed that the true fraction of pixel differences between the phantom image x̄ and the
rounded central reconstruction r̄ , denoted by Es, is sometimes well approximated by the bound Us, in particular for small
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(a) Phantom 1, 32 × 32. (b) Phantom 1, 64 × 64. (c) Phantom 1, 128 × 128.

(d) Phantom 2, 32 × 32. (e) Phantom 2, 64 × 64. (f) Phantom 2, 128 × 128.

(g) Phantom 3, 32 × 32. (h) Phantom 3, 64 × 64. (i) Phantom 3, 128 × 128.

(j) Phantom 4, 32 × 32. (k) Phantom 4, 64 × 64. (l) Phantom 4, 128 × 128.

Fig. 11. Fan beam, line model: computed Ud bounds as a function of the number of projection angles.

images. Although bounding errors for the line model for fan beam tomography is more challenging than for parallel beam
tomography, the bounds are reasonably low and effective.

In some of the figures, parts of the graph for Us(2) are missing, caused by zero values that cannot be displayed in the
logarithmic scale. This can even occur due to numerical inaccuracies in the computation of the bounds if the true, correct
bound is slightly larger than 0.

8. Outlook and conclusions

In this article, we have presented a range of general bounds on the accuracy of binary solutions, with respect to the
unknown original vector. The bounds are based on an approach initiated in [5], where the authors presented bounds for the
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case that the projection matrix has constant column sums. In the present paper, bounds have been derived that are much
more general as they do not depend on this assumption.

Our bounds can be computed within reasonable time and give guarantees: (i) on the number of vector entries that can
be different between any two binary solutions of an underdetermined problem and (ii) on the difference between a vector
obtained by rounding the central reconstruction and any binary solution. The experimental results for parallel beam and fan
beam tomography show that for certain sets of projection data the bounds computed by our method allow to prove that the
number of differences between binary solutions of the reconstruction problemmust be very small, even if the corresponding
real-valued system of equations is severely underdetermined.
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