3,825 research outputs found

    The explanatory relevance of Nash equilibrium: one-dimensional chaos in boundedly rational learning

    Get PDF
    Game theory is often used to explain behavior. Such explanations often proceed by demonstrating that the behavior in question is a Nash equilibrium. Agents are in Nash equilibrium if each agent’s strategy maximizes her payoff given her opponents’ strategies. Nash equilibriums are fundamentally static, but it is usually assumed that equilibriums will be the outcome of a dynamic process of learning or evolution. This article demonstrates that, even in the most simple setting, this need not be true. In two-strategy games with just a single equilibrium, a family of imitative learning dynamics does not lead to equilibrium

    Effect of cluster size of chalcogenide glass nanocolloidal solutions on the surface morphology of spin-coated amorphous films

    Full text link
    Amorphous chalcogenide thin film deposition can be achieved by a spin-coating technique from proper solutions of the corresponding glass. Films produced in this way exhibit certain grain texture, which is presumably related to the cluster size in solution. This paper deals with the search of such a correlation between grain size of surface morphology of as-deposited spin-coated As33S67 chalcogenide thin films and cluster size of the glass in butylamine solutions. Optical absorption spectroscopy and dynamic light scattering were employed to study optical properties and cluster size distributions in the solutions at various glass concentrations. Atomic force microscopy is used to study the surface morphology of the surface of as-deposited and thermally stabilized spin-coated films. Dynamic light scattering revealed a concentration dependence of cluster size in solution. Spectral-dependence dynamic light scattering studies showed an interesting athermal photo-aggregation effect in the liquid state.Comment: 15 pages, 8 figure

    Cancer symptom awareness and barriers to symptomatic presentation in England – Are we clear on cancer?

    Get PDF
    Background: Low cancer awareness may contribute to delayed diagnosis and poor cancer survival. We aimed to quantify socio-demographic differences in cancer symptom awareness and barriers to symptomatic presentation in the English population. Methods: Using a uniquely large data set (n=49?270), we examined the association of cancer symptom awareness and barriers to presentation with age, gender, marital status and socio-economic position (SEP), using logistic regression models to control for confounders. Results: The youngest and oldest, the single and participants with the lowest SEP recognised the fewest cancer symptoms, and reported most barriers to presentation. Recognition of nine common cancer symptoms was significantly lower, and embarrassment, fear and difficulties in arranging transport to the doctor’s surgery were significantly more common in participants living in the most deprived areas than in the most affluent areas. Women were significantly more likely than men to both recognise common cancer symptoms and to report barriers. Women were much more likely compared with men to report that fear would put them off from going to the doctor. Conclusions: Large and robust socio-demographic differences in recognition of some cancer symptoms, and perception of some barriers to presentation, highlight the need for targeted campaigns to encourage early presentation and improve cancer outcomes

    Spin relaxation in (110) and (001) InAs/GaSb superlattices

    Full text link
    We report an enhancement of the electron spin relaxation time (T1) in a (110) InAs/GaSb superlattice by more than an order of magnitude (25 times) relative to the corresponding (001) structure. The spin dynamics were measured using polarization sensitive pump probe techniques and a mid-infrared, subpicosecond PPLN OPO. Longer T1 times in (110) superlattices are attributed to the suppression of the native interface asymmetry and bulk inversion asymmetry contributions to the precessional D'yakonov Perel spin relaxation process. Calculations using a nonperturbative 14-band nanostructure model give good agreement with experiment and indicate that possible structural inversion asymmetry contributions to T1 associated with compositional mixing at the superlattice interfaces may limit the observed spin lifetime in (110) superlattices. Our findings have implications for potential spintronics applications using InAs/GaSb heterostructures.Comment: 4 pages, 2 figure

    Colossal dielectric constants in transition-metal oxides

    Get PDF
    Many transition-metal oxides show very large ("colossal") magnitudes of the dielectric constant and thus have immense potential for applications in modern microelectronics and for the development of new capacitance-based energy-storage devices. In the present work, we thoroughly discuss the mechanisms that can lead to colossal values of the dielectric constant, especially emphasising effects generated by external and internal interfaces, including electronic phase separation. In addition, we provide a detailed overview and discussion of the dielectric properties of CaCu3Ti4O12 and related systems, which is today's most investigated material with colossal dielectric constant. Also a variety of further transition-metal oxides with large dielectric constants are treated in detail, among them the system La2-xSrxNiO4 where electronic phase separation may play a role in the generation of a colossal dielectric constant.Comment: 31 pages, 18 figures, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom

    The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND)

    Get PDF
    The observation of neutrinoless double-beta decay (0νββ{\nu}{\beta}{\beta}) would show that lepton number is violated, reveal that neutrinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of \sim0.1 count /(FWHM\cdott\cdotyr) in the region of the signal. The current generation 76^{76}Ge experiments GERDA and the MAJORANA DEMONSTRATOR utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ{\nu}{\beta}{\beta} signal region of all 0νββ{\nu}{\beta}{\beta} experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76^{76}Ge experiment. The collaboration aims to develop a phased 0νββ{\nu}{\beta}{\beta} experimental program with discovery potential at a half-life approaching or at 102810^{28} years, using existing resources as appropriate to expedite physics results.Comment: Proceedings of the MEDEX'17 meeting (Prague, May 29 - June 2, 2017

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes
    corecore