38 research outputs found

    CONTROL OF ANGULAR BACTERIAL LEAF SPOT DISEASE OF WATERMELON USING ADVANCED COPPER COMPOSITES

    Get PDF
    Angular leaf spot, caused by P. syringae, is one of the most important bacterial disease of watermelon. For disease management, growers rely on copper bactericides, which are effective after the first two weeks of transplanting, while they couldn’t be applied before that due to the high phytotoxicity they may cause to the plant. This study was undertaken to evaluate the antibacterial activity of three new copper composites, core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu), as potential treatments to control the disease before the emergence of the first true leaf where copper is not available, and to identify the possibility of applying the newly designed copper composites during that period to significantly reduce secondary dispersal of disease inoculum. In vitro, 50 μg/ml of metallic copper from MV-Cu and FQ-Cu significantly reduced the P. syringae populations after 2hrs of exposure compared to the untreated control (P= 0.05) and were more effective than using the Kocide® 3000. Greenhouse studies demonstrated that MV-Cu and FQ-Cu significantly reduced the disease incidence compared to both Mankozeb+ Kocide® 3000 and untreated control when using the seed inoculation method. In contrast, none of the nano-composites significantly reduced disease incidence when using the spray inoculation method. MV-Cu and FQ-Cu managed to significantly reduce seedling to seedling disease transmission under greenhouse conditions (P = 0.05). This study highlights that copper composites have the potential to manage P. syringae in the first two weeks of transplanting and reducing the contamination rate from infected to healthy transplant

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Design of Positive, Negative, and Alternating Sign Generalized Logistic Maps

    No full text
    The discrete logistic map is one of the most famous discrete chaotic maps which has widely spread applications. This paper investigates a set of four generalized logistic maps where the conventional map is a special case. The proposed maps have extra degrees of freedom which provide different chaotic characteristics and increase the design flexibility required for many applications such as quantitative financial modeling. Based on the maximum chaotic range of the output, the proposed maps can be classified as positive logistic map, mostly positive logistic map, negative logistic map, and mostly negative logistic map. Mathematical analysis for each generalized map includes bifurcation diagrams relative to all parameters, effective range of parameters, first bifurcation point, and the maximum Lyapunov exponent (MLE). Independent, vertical, and horizontal scales of the bifurcation diagram are discussed for each generalized map as well as a new bifurcation diagram related to one of the added parameters. A systematic procedure to design two-constraint logistic map is discussed and validated through four different examples

    Trajectory control and image encryption using affine transformation of lorenz system

    No full text
    This paper presents a generalization of chaotic systems using two-dimensional affine transformations with six introduced parameters to achieve scaling, reflection, rotation, translation and/or shearing. Hence, the location of the strange attractor in space can be controlled without changing its chaotic dynamics. In addition, the embedded parameters enhance the randomness and sensitivity of the system and control its response. This approach overpasses performing the transformations as post-processing stages by applying them on the resulting time series. Trajectory control through dynamic parameters is demonstrated. Simulation results validate the proposed analysis for both the simplest and Lorenz chaotic systems. An image encryption scheme is implemented using transformed Lorenz system resulting in a more secure encryption scheme in comparison to Lorenz and other recent related works. The scheme exhibits good performance when assessed using the PRNG properties, encrypted image histogram and its uniformity through chi square test, pixel correlation, Mean Squared Error (MSE), entropy, Peak Signal-to-Noise Ratio (PSNR), the National Institute of Standards & Technology (NIST) test, key space, key sensitivity, resistance to differential, ciphertext-only, known plaintext, and chosen plaintext attacks, robustness against noise and computation time

    New spectrophotometric and conductometric methods for macrolide antibiotics determination in pure and pharmaceutical dosage forms using rose Bengal

    No full text
    Two Simple, accurate, precise, and rapid spectrophotometric and conductometric methods were developed for the estimation of erythromycin thiocyanate (I), clarithromycin (II), and azithromycin dihydrate (III) in both pure and pharmaceutical dosage forms. e spectrophotometric procedure depends on the reaction of rose bengal and copper with the cited drugs to form stable ternary complexes which are extractable with methylene chloride, and the absorbances were measured at 558, 557, and 560 nm for (I), (II), and (III), respectively. e conductometric method depends on the formation of an ion-pair complex between the studied drug and rose bengal. For the spectrophotometric method, Beer's law was obeyed. e correlation coefficient ( 2 ) for the studied drugs was found to be 0.9999. e molar absorptivity ( ), Sandell's sensitivity, limit of detection (L�D), and limit of quanti�cation (L��) were also calculated. e proposed methods were successfully applied for the determination of certain pharmaceutical dosage forms containing the studied drug
    corecore