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This paper proposes a novel generalized switched synchronization scheme among 𝑛 fractional-order chaotic systems with various
operatingmodes. Digital dynamic switches and dynamic scaling factors are employed, which offermany new capabilities. Dynamic
switches determine the role of each system as a master or a slave. A system can either have a fixed role throughout the simulation
time (static switching) or switch its role one or more times (dynamic switching). Dynamic scaling factors are used for each state
variable of the master system. Such scaling factors control whether the master is a single system or a combination of several
systems. In addition, these factors determine the generalized relation between the original systems from which the master system
is built as well as the slave system(s). Moreover, they can be utilized to achieve different kinds of generalized synchronization
relations for the purpose of generating new attractor diagrams. The paper presents a mathematical formulation and analysis of
the proposed synchronization scheme. Furthermore, many numerical simulations are provided to demonstrate the successful
generalized switched synchronization of several fractional-order chaotic systems.The proposed scheme provides various functions
suitable for applications such as different master-slave communication models and secure communication systems.

1. Introduction

Chaos theory has always attracted the interest of scientific
research because it has a wide spectrum of applications, such
as in secure communication [1, 2], cryptography [3–8], circuit
theory [9–12], andmodelingmultidisciplinary phenomena in
physics, chemistry, and biology [13–15].This is due to the fact
that chaotic systems exhibit aperiodic, bounded, long-time
evolution and sensitive dependence on initial conditions for
some ranges of parameters. In the last few decades, the use
of fractional calculus has flourished because of the advances
in numerical methods for solving fractional-order systems
and their implementations [16, 17]. It found its way to many
applications including bioengineering [18], electromagnetics
[19, 20], and image encryption [21]. Fractional-order chaotic
systemswithmore parameters allow extra degrees of freedom
and flexibility, which make them more suitable for a lot of
applications compared to their integer-order counterparts.

Synchronization or coupling of two or more, identical or
different, fractional-order chaotic systems has appeared a lot

in recent literature due to its applications in biological and
physical systems, structural engineering, ecological models,
secure communication, and cryptography [22–31]. Chaotic
synchronization represents a challenge because chaotic sys-
tems are sensitive to initial conditions, where two trajectories
starting at slightly different initial conditions exponentially
diverge from each other in the long-term evolution. Many
feedback control methods of synchronization have been
used; yet, the active nonlinear control method [32–36] is
utilized in this paper. Several papers handled conventional
synchronization and antisynchronization of two identical
chaotic systems starting at different initial conditions [32, 37]
or two different systems [33]. Synchronized systems have
exactly the same magnitude and phase while antisynchro-
nized ones exhibit the same magnitude but opposite phase
(180∘ phase shift). Generalized synchronization, in which the
slave response could exhibit lower or higher amplitude than
the master response via scaling or transformations, has also
been discussed with applications to secure communication
[38–40]. More recent researches focused on control and
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synchronization in the fractional-order domain [24, 34, 41–
44], introduced generalized synchronization with dynamic
scaling suitable for chaotic modulation [35, 45], and provided
the capability of control and switching for exchanging roles
between master and slave systems [36, 46].

Meanwhile, master-slave communication has found its
way to many applications such as industrial automation
[47], groundwater remediation [48], and medical robotics
and computer-assisted surgery [49]. Requirements on the
number of devices and the type of interactions between
them extend far beyond synchronization of two systems or
one-to-one communication. For example, in one-to-many
communication there is a single master and multiple slaves
[50]. It might be the case that more than one device have
the authority to communicate with the others or control their
responses [51, 52]. Other examples include mutual intercon-
nections [53] in which forward communication occurs from
master to slave and backward communication occurs from
slave to master. Role switching [54–56] is also presented for
fairness and power management purposes. Recent research
[57] investigated mutual synchronization of bidirectional
coupling integer-order chaotic systems, which can be applied
in full-duplex chaos-based communication.

In this paper, a novel synchronization scheme among 𝑛
fractional-order chaotic systems is proposed. This general-
ized scheme offers different synchronization alternatives that
can be utilized in many of the aforementioned applications.
Each chaotic system can play the role of a master or a slave
using switching control. The master can be a single system or
a linear combination of two or more systems. Furthermore,
different operational modes are possible using static or
dynamic switches and scaling factors. For each of the pro-
posed synchronization alternatives, numerical simulations
are performed. The results of those simulations validate the
presented mathematical analysis and demonstrate successful
synchronization.

More specifically, factors that generate various synchro-
nization cases include the following: the role of each system
as a master or a slave and the generalized relation between
the original systems from which the master system is built as
well as the slave system(s). Each system can have a fixed role
as master or slave throughout the simulation time, which is
called static switching. In dynamic switching, a system can
switch its role one or more times. In all the presented cases,
the master system can be a single system or constructed as
a combination of two or more systems. Such a combination
can be their summation or difference or a linear combination
of them. Different scaling factors, each corresponding to
one state variable, are used for each system. In addition
to their role as coefficients of the linear combination, they
can be utilized to achieve different kinds of generalized
synchronization relations for the time series of each state
variable and, consequently, generate new attractor diagrams.

The rest of this paper is organized as follows. Section 2
reviews the numerical method utilized in solving fractional-
order differential equations. The main chaotic properties of
the systems selected for validating the proposed generalized
synchronization scheme are briefly listed as well. Section 3
introduces the block diagram of the proposed scheme, the

theory behind it, and the associated mathematical analysis
to compute the values of all required control signals in a
generalized manner. Section 4 provides various numerical
experiments that cover the main capabilities of the pro-
posed synchronization scheme and successfully validate our
mathematical analysis. Section 5 provides a discussion of
the validity of the proposed analysis for various values of
fractional orders with simulations. In addition, it suggests
several applications for the proposed generalized dynamic
switched synchronization. Finally, Section 6 summarizes the
main contributions of the paper.

2. Numerical Solution and Properties of
the Utilized Systems

This section presents a brief review of the numerical method
used to solve fractional differential equations. It also summa-
rizes the properties of the chaotic systems, which are selected
for the simulations in Section 4.

2.1. Numerical Solution of a System of Fractional Differential
Equations. Finding robust and stable numerical and analyt-
ical methods for solving a system of fractional differential
equations has recently been an active research topic. The
definition of Grünwald–Letnikov derivative has been used
in numerical analysis to discretize fractional differential
equations. The Caputo fractional derivative [16] of order 𝛼 is
defined as𝐷𝛼𝑓 (𝑡) = 𝑑𝛼𝑓 (𝑡)𝑑𝑡𝛼

= {{{{{{{
1Γ (𝑚 − 𝛼) ∫𝑡0 𝑓𝑚 (𝜏)(𝑡 − 𝜏)𝛼−𝑚+1 𝑑𝜏 𝑚 − 1 < 𝛼 < 𝑚𝑑𝑚𝑑𝑡𝑚𝑓 (𝑡) 𝛼 = 𝑚, (1)

where 𝑚 is the first integer greater than 𝛼 and Γ(⋅) is the
gamma function defined byΓ (𝑧) = ∫∞

0
𝑒−𝑡𝑡𝑧−1𝑑𝑡,Γ (𝑧 + 1) = 𝑧Γ (𝑧) . (2)

For fractional-order chaotic systems, 𝑚 is usually fixed to 1.
Hence, 𝛼 ∈ (0, 1].

Grünwald–Letnikov method of approximation [58] is
defined as follows:𝐷𝛼𝑓 (𝑡) ≈ ℎ−𝛼 𝑘∑

𝑗=0

(−1)𝑗 (𝛼𝑗)𝑓 (𝑡𝑘−𝑗) , (3)

where ℎ is the step size. Consider the fractional-order
differential equation𝐷𝛼𝑦 (𝑡) = 𝑓 (𝑦 (𝑡) , 𝑡) . (4)

Using (3), (4) can be discretized as follows:𝑦 (𝑡𝑘) = 𝑓 (𝑦 (𝑡𝑘) , 𝑡𝑘) ℎ𝛼 − 𝑘∑
𝑗=1

𝑐𝑗𝛼𝑦 (𝑡𝑘−𝑗) , (5)
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where 𝑡𝑘 = 𝑘ℎ and 𝑐𝑗𝛼 are the Grünwald–Letnikov coeffi-
cients defined as

𝑐𝑗𝛼 = (1 − 1 + 𝛼𝑗 ) 𝑐𝑗−1𝛼, 𝑗 = 1, 2, 3, . . . , 𝑐0𝛼 = 1. (6)

The same algebraic manipulation can be applied to a
system of three fractional-order differential equations:

𝐷𝛼𝑥 = 𝑓 (𝑥, 𝑦, 𝑧) , (7a)𝐷𝛽𝑦 = 𝑔 (𝑥, 𝑦, 𝑧) , (7b)𝐷𝛾𝑧 = ℎ (𝑥, 𝑦, 𝑧) , (7c)

where 0 < 𝛼, 𝛽, 𝛾 ≤ 1, to obtain the corresponding
solutions. A comprehensive study of fractional differential
equations can be found in [59], which includes mathematical
analysis of the existence of the solution of such models and
presents methods for finding it. Researches that propose
novel fractional-order chaotic systems devote part of their
studies to the existence and uniqueness of their solutions
such as [26]. The well-posedness of more generalized and
complicated models has been studied in the literature as well,
for example, [60–62].

In the rest of this paper, a step size of 0.005 is employed
according to the systemproperties and a total simulation time
of 200 time units is used except where stated otherwise.

2.2. Properties of the Utilized Systems. Simulation results
will be demonstrated through various examples and cases
in Section 4 when the number of systems, 𝑛, equals 3.
Three fractional-order chaotic systems with piecewise and
quadratic nonlinearities were selected from [58]: Cellular
Neural Networks-3 cells (CNN-3 cells), Liu, and Financial
systems. These systems were first presented and studied in
[63], [64], and [65], respectively. Table 1 shows the equations
and strange attractors of the three systems for the specified
values of parameters and initial conditions, which aremarked
in red. In addition, time series of the three state variables
for the three systems are shown in Figure 1. Each system
is designated a color that is fixed throughout the paper to
distinguish its attractor diagram and time series. The values
of parameters and initial conditions given in Table 1 are used
in the simulations, which are presented in Section 4. More
examples with different orders of fractional derivatives are
presented in Section 5.

3. The Proposed Generalized Synchronization
Scheme and Its Mathematical Analysis

Consider 𝑛 communication sources for which the roles as
master or slave are to be given during simulation. Each one
is represented as a chaotic system, which consists of three

fractional-order differential equations. For instance, system𝑗 is given by 𝐷𝛼𝑥𝑗 = 𝑓𝑗 (𝑥𝑗, 𝑦𝑗, 𝑧𝑗) + 𝑆𝑗𝑢𝑗𝑥,𝐷𝛽𝑦𝑗 = 𝑔𝑗 (𝑥𝑗, 𝑦𝑗, 𝑧𝑗) + 𝑆𝑗𝑢𝑗𝑦,𝐷𝛾𝑧𝑗 = ℎ𝑗 (𝑥𝑗, 𝑦𝑗, 𝑧𝑗) + 𝑆𝑗𝑢𝑗𝑧, (8)

for 𝑗 = 1, 2, . . . , 𝑛, where 𝑓𝑗(𝑥𝑗, 𝑦𝑗, 𝑧𝑗) implicitly includes
the system parameters. Figure 2 shows the block diagram of
the proposed generalized switched synchronization scheme
when the number of systems 𝑛 = 3, where𝑆1, 𝑆2, and 𝑆3 are control switches for systems 1, 2, and

3, respectively, where 𝑆𝑖 ∈ {0, 1}. 𝑆𝑖 equals “0” when
system 𝑖 acts as a master and equals “1” when it acts as
a slave.𝑘𝑖𝑥, 𝑘𝑖𝑦, and 𝑘𝑖𝑧 are real-valued scaling factors for the
variables of system 𝑖 when it acts as a master, where𝑖 ∈ {1, 2, 3}.𝑢𝑖𝑥, 𝑢𝑖𝑦, and 𝑢𝑖𝑧 are control functions corresponding
to each state variable of system 𝑖 using active non-
linear control synchronization technique, where 𝑖 ∈{1, 2, 3}.

If it is required for a certain system not to take place in
the synchronization process, its control switch should be set
to zero with zero scaling factors as well. Control signals can
be calculated based on active nonlinear control technique and
Lyapunov stability according to the mathematical analysis
that will be explained. All synchronization alternatives, which
are detailed in Section 4, are supported with various experi-
ments and numerical simulations that validate the proposed
scheme and conform to the presented mathematical analysis.

For the newly proposed 𝑛-system generalized dynamic
switched synchronization, the generic steps to calculate
the control signals depend on superposition. The control
functions 𝑢𝑖𝑥, 𝑢𝑖𝑦, and 𝑢𝑖𝑧, corresponding to system 𝑖, affect its
response only when it acts as a slave. For each slave system 𝑖,
the corresponding master system will be given by the general
relations: 𝑥𝑚 = 𝑛∑

𝑗=1,𝑗 ̸=𝑖

𝑘𝑗𝑥 (1 − 𝑆𝑗) 𝑥𝑗, (9a)

𝑦𝑚 = 𝑛∑
𝑗=1,𝑗 ̸=𝑖

𝑘𝑗𝑦 (1 − 𝑆𝑗) 𝑦𝑗, (9b)

𝑧𝑚 = 𝑛∑
𝑗=1,𝑗 ̸=𝑖

𝑘𝑗𝑧 (1 − 𝑆𝑗) 𝑧𝑗, (9c)

where the scaling factors 𝑘𝑗𝑥, 𝑘𝑗𝑦, and 𝑘𝑗𝑧 control the relation
between the slave system 𝑖 and the original response of the
rest of the systems before the construction of the overall
master combination. The error vector 𝑒𝑖 is given by

𝑒𝑖 = (𝑒𝑖𝑥𝑒𝑖𝑦𝑒𝑖𝑧) = (𝑥𝑖 − 𝑥𝑚𝑦𝑖 − 𝑦𝑚𝑧𝑖 − 𝑧𝑚). (10)
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Table 1: Equations, parameter values, initial conditions, and strange attractors of the utilized systems at (𝛼, 𝛽, 𝛾) = (0.99, 0.99, 0.99).
CNN-3 cells system Liu system Financial system𝐷𝛼𝑥1 = −𝑥1+𝑎1𝑓(𝑥1)−𝑔1𝑓(𝑦1)−𝑔1𝑓(𝑧1)+𝑆1𝑢1𝑥 𝐷𝛼𝑥2 = −𝑎2𝑥2 + 𝑑2𝑦22 + 𝑆2𝑢2𝑥 𝐷𝛼𝑥3 = 𝑧3 + (𝑦3 − 𝑎3) 𝑥3 + 𝑆3𝑢3𝑥𝐷𝛽𝑦1 = −𝑦1−𝑔1𝑓(𝑥1)+𝑏1𝑓(𝑦1)−𝑑1𝑓(𝑧1)+𝑆1𝑢1𝑦 𝐷𝛽𝑦2 = 𝑏2𝑦2 − 𝑔2𝑥2𝑧2 + 𝑆2𝑢2𝑦 𝐷𝛽𝑦3 = 1 − 𝑏3𝑦3 − 𝑥32 + 𝑆3𝑢3𝑦𝐷𝛾𝑧1 = −𝑧1−𝑔1𝑓(𝑥1)+𝑑1𝑓(𝑦1)+𝑐1𝑓(𝑧1)+𝑆1𝑢1𝑧
where 𝑓(𝑥) = 0.5(|𝑥 + 1| − |𝑥 − 1|) 𝐷𝛾𝑧2 = −𝑐2𝑧2 + 𝑓2𝑥2𝑦2 + 𝑆2𝑢2𝑧 𝐷𝛾𝑧3 = −𝑥3 − 𝑐3𝑧3 + 𝑆3𝑢3𝑧(𝑎1, 𝑏1, 𝑐1, 𝑑1, 𝑔1) = (1.24, 1.1, 1, 4.4, 3.21) (𝑎2, 𝑏2, 𝑐2, 𝑑2, 𝑓2, 𝑔2) = (1, 2.5, 5, 1, 4, 4) (𝑎3, 𝑏3, 𝑐3) = (1, 0.1, 1)(𝑥10, 𝑦10, 𝑧10) = (0.1, 0.1, 0.1) (𝑥20, 𝑦20, 𝑧20) = (0.2, 0, 0.5) (𝑥30, 𝑦30, 𝑧30) = (2, −1, 1)
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Thus, the fractional derivatives of the error vector 𝑒𝑖 are
given as

(𝐷𝛼𝑒𝑖𝑥𝐷𝛽𝑒𝑖𝑦𝐷𝛾𝑒𝑖𝑧) = (((((
(

𝑓𝑖 (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) + 𝑆𝑖𝑢𝑖𝑥 − 𝑛∑
𝑗=1,𝑗 ̸=𝑖

(𝑘𝑗𝑥 (1 − 𝑆𝑗) 𝑓𝑗 (𝑥𝑗, 𝑦𝑗, 𝑧𝑗) + 𝑘𝑗𝑥 (1 − 𝑆𝑗) 𝑆𝑗𝑢𝑗𝑥)𝑔𝑖 (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) + 𝑆𝑖𝑢𝑖𝑦 − 𝑛∑
𝑗=1,𝑗 ̸=𝑖

(𝑘𝑗𝑦 (1 − 𝑆𝑗) 𝑔𝑗 (𝑥𝑗, 𝑦𝑗, 𝑧𝑗) + 𝑘𝑗𝑦 (1 − 𝑆𝑗) 𝑆𝑗𝑢𝑗𝑦)ℎ𝑖 (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) + 𝑆𝑖𝑢𝑖𝑧 − 𝑛∑
𝑗=1,𝑗 ̸=𝑖

(𝑘𝑗𝑧 (1 − 𝑆𝑗) ℎ𝑗 (𝑥𝑗, 𝑦𝑗, 𝑧𝑗) + 𝑘𝑗𝑧 (1 − 𝑆𝑗) 𝑆𝑗𝑢𝑗𝑧)
)))))
)

. (11)
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Figure 1: Time series of the three selected systems: (a) 𝑥 time series, (b) 𝑦 time series, and (c) 𝑧 time series.

It should be noted that the terms 𝑘𝑗𝑥(1 − 𝑆𝑗)𝑆𝑗𝑢𝑗𝑥, 𝑘𝑗𝑦(1 −𝑆𝑗)𝑆𝑗𝑢𝑗𝑦, and 𝑘𝑗𝑧(1 − 𝑆𝑗)𝑆𝑗𝑢𝑗𝑧 vanish because 𝑆𝑗 is either zero
or one.

Based on the nonlinear control theory and Lyapunov
stability theory [32–36], these derivatives should be decaying
functions of the error. Let

(𝐷𝛼𝑒𝑖𝑥𝐷𝛽𝑒𝑖𝑦𝐷𝛾𝑒𝑖𝑧) = (𝑉𝑖𝑥 (𝑒𝑖𝑥)𝑉𝑖𝑦 (𝑒𝑖𝑦)𝑉𝑖𝑧 (𝑒𝑖𝑧)) , (12)

where the terms 𝑉𝑖𝑥(𝑒𝑖𝑥), 𝑉𝑖𝑦(𝑒𝑖𝑦), and 𝑉𝑖𝑧(𝑒𝑖𝑧) form a system
of linear equations in the errors 𝑒𝑖𝑥, 𝑒𝑖𝑦, and 𝑒𝑖𝑧. These terms
should be chosen carefully to force negative eigenvalues for
the synchronization system and to form a stable system with
zero steady state [66]. They usually take the form

(𝑉𝑖𝑥 (𝑒𝑖𝑥)𝑉𝑖𝑦 (𝑒𝑖𝑦)𝑉𝑖𝑧 (𝑒𝑖𝑧)) = (−𝑘𝑢𝑥 0 00 −𝑘𝑢𝑦 00 0 −𝑘𝑢𝑧)(𝑒𝑖𝑥𝑒𝑖𝑦𝑒𝑖𝑧), (13)

where 𝑘𝑢𝑥, 𝑘𝑢𝑦, 𝑘𝑢𝑧 ≥ 1 are tuning parameters that control
the error. There is a tradeoff between the value of the tuning
parameters and the speed of achieving synchronization. In
the rest of this paper, the value 𝑘𝑢𝑥 = 𝑘𝑢𝑦 = 𝑘𝑢𝑧 = 50 is

chosen. Therefore, for 1 ≤ 𝑖 ≤ 𝑛, substituting from (12) into
(11) and setting 𝑆𝑖 = 1 yield

𝑢𝑖𝑥 = 𝑉𝑖𝑥 (𝑒𝑖𝑥) + 𝑛∑
𝑗=1,𝑗 ̸=𝑖

𝑘𝑗𝑥 (1 − 𝑆𝑗) 𝑓𝑗 (𝑥𝑗, 𝑦𝑗, 𝑧𝑗)− 𝑓𝑖 (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) , (14a)

𝑢𝑖𝑦 = 𝑉𝑖𝑦 (𝑒𝑖𝑦) + 𝑛∑
𝑗=1,𝑗 ̸=𝑖

𝑘𝑗𝑦 (1 − 𝑆𝑗) 𝑔𝑗 (𝑥𝑗, 𝑦𝑗, 𝑧𝑗)− 𝑔𝑖 (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) , (14b)

𝑢𝑖𝑧 = 𝑉𝑖𝑧 (𝑒𝑖𝑧) + 𝑛∑
𝑗=1,𝑗 ̸=𝑖

𝑘𝑗𝑧 (1 − 𝑆𝑗) ℎ𝑗 (𝑥𝑗, 𝑦𝑗, 𝑧𝑗)− ℎ𝑖 (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) . (14c)

The obtained relations ((14a), (14b), and (14c)) are substi-
tuted in the equations of the systems fromwhich our analysis
started at the beginning of this section. This mathematical
analysis and the obtained relations for the control signals are
general and can be adapted to fit various cases. Section 4
presents the simulation results of such various cases through
setting the values of the switches and scaling factors.
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Figure 2: Block diagram of the generalized dynamic switched synchronization of three fractional-order chaotic systems.

4. Simulation Results

This section presents several examples to cover the different
synchronization capabilities, which are offered by the pro-
posed scheme.

4.1. Static Switching. Static switching is the case in which the
role of the system as master or slave is fixed. That is, the
control switches (𝑆𝑖), 𝑖 ∈ {1, 2, 3}, of the systems are time-
independent constant values throughout the simulation time.

4.1.1. Single Master. In this case, only one system is allowed
to act as a master with the corresponding control switch
set to zero. Synchronization could be achieved successfully
starting at different initial points. Table 2 shows different cases
where only one system acts as a master and the other two
systems act as slaves. Colored attractor diagrams show that
the synchronization between master-slaves is achieved. In
addition, error plots are given, which show that errors decay
quickly to zero for the time series of the three phase space
dimensions.

4.1.2. Master System Is a Linear Combination. In this case,
two of the systems act as a combined master; that is,

the corresponding control switches are set to zero, while
the remaining system 𝑖 is the slave with a control switch
that equals one. A novel chaotic response is formed as a
“linear” combination of two fractional-order systems and
another system is synchronized with this linear combination.
Figures 3 and 4 show examples of the constructed linear
combinations, colored in dark blue, in which the coefficients𝑘𝑖𝑥, 𝑘𝑖𝑦, and 𝑘𝑖𝑧 are constant throughout the simulation
time. These two examples illustrate the path of the systems
responses in part of the complete block diagram in Figure 2.
The resulting attractor diagram of the slave system is also
shown to follow the same trajectory as the master system.
In Figure 3(a), CNN and Liu systems are linearly combined
to form the resultant master by setting their switches to
0. The resultant master looks similar to Liu as the chosen
coefficients of the Liu system (0.8) are greater than those
of the CNN system (0.1). Figure 3(b) shows the strange
attractor of Financial system, which took the role of a slave
by setting its switch to 1. Figure 3(c) shows the time series
of the resultant master and slave components, which indicate
that the slave system is well synchronized with the resultant
master. Figure 4(a) can be described similarly where the
resultant master looks similar to Financial system. Figures
4(b) and 4(c) show that the slave system is well synchronized
with the resultant master. This linear combination represents
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Figure 3: (a) Construction of the linear combination of CNN-3 cells and Liu systems with 𝑘1𝑥 = 𝑘1𝑦 = 𝑘1𝑧 = 0.1 and 𝑘2𝑥 = 𝑘2𝑦 = 𝑘2𝑧 = 0.8,
(b) attractor of the slave system successfully synchronized, and (c) time series of both master and slave systems successfully synchronized.

anothermeans of controlling the system response and forcing
it to yield the required behaviorwithmore degrees of freedom
and controlling capability offered by the coefficients of the
linear combination. Table 3 lists further examples of linear
combinations formed by each pair of the utilized systems
and the corresponding values of scaling factors. In each
case, the attractor diagrams of the resultant master and the
slave system are successfully synchronized.When the utilized
systems have close ranges of outputs, the resulting attractor
diagram tends to be similar to that of the system which has a
higher value for the coefficient, or weight.

4.2. Dynamic Switching. In this case, the used systems can
exchange roles as master or slave throughout the simulation
time according to the specified intervals.The example shown
in Figure 5 first sets CNN-3 cells as the master system, and
then Liu system becomes the master, followed by Financial
system. Each system becomes a master for one-third of the
total simulation time while the two other systems act as
slaves in each time interval.The scaling factors corresponding
to each system are set to ones when it acts as a master.
The attractor diagram of the master system is shown in
Figure 5(a), while Figures 5(b)–5(d) show the attractors of
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Table 2: Attractor diagrams and error functions in case of static synchronization with a single master.
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the three systems after synchronization following the same
color code in Table 1 and Figure 1 for clarity. The green color
corresponds to the first interval of time (following CNN-3
cells), magenta color corresponds to the second interval (fol-
lowing Liu), and cyan color corresponds to the third interval
(following Financial system). The red dot shows the initial

point at which each attractor starts. Moreover, Figure 5(e)
shows the three time series successfully synchronized with
the corresponding values of switches. Various other cases can
be discussed similarly where dynamic switching may also be
achieved between a linear combination of two systems and
the third system.
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Table 3: Different successfully synchronized linear combinations of the selected systems.
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4.3. Static and Dynamic Scaling Factors. The scaling factors
that are used to construct the master from original system(s)
can be constants (static) or functions of time (dynamic).
Examples that illustrate the difference between the two cases
are shown in Figure 6 and described in detail as follows.

4.3.1. Static Scaling Factors. In this case, each 𝑘𝑖𝑥, 𝑘𝑖𝑦, and𝑘𝑖𝑧, 𝑖 ∈ {1, 2, 3}, are constant time-independent values. The
master responses (𝑥𝑚, 𝑦𝑚, and 𝑧𝑚) are scaled versions of the
original system with the same factor or each with a different
factor. The slave system always follows the master system;
yet, different relations exist between them and the original
system. For positive scaling factor of a given phase space
dimension, the slave time series is in-phase (synchronized)
with that of the original system. For negative scaling factors,
they have an opposite phase (antisynchronized). Moreover,
when their absolute values are greater than one, the slave
response has a higher amplitude than the original system
response, whereas it has a lower amplitude when their
absolute values are less than one. Figure 7 shows an example
in which Liu is the master system while Financial system and
CNN-3 cells are slaves. 𝑥 time series is scaled by 𝑘2𝑥 = −1,𝑦 time series by 𝑘2𝑦 = −0.5, and 𝑧 time series by 𝑘2𝑧 = 2,
which are the same scaling factors of Figure 6(a). Figures
7(a)–7(c) show the time series of the original system which
is then scaled with the corresponding scaling factor to get
the required master response. That is, 𝑥 time series of the

master response, and consequently the slave responses, are
antisynchronized versions of the original 𝑥-time series of Liu
system.Their 𝑦 and 𝑧 time series equal that of the original Liu
systemmultiplied by −0.5 and 2, respectively. In addition, the
time series of the master and slave responses are successfully
synchronized and their attractor diagrams are coincident as
shown in Figure 7(d).

4.3.2. Dynamic Scaling Factors. Dynamic scaling represents
a generalization with static scaling as a special case. In
dynamic scaling, the scaling factors are functions of time as
their value(s) could change at each time instant. It could be
required that the original and slave systems be in-phase for an
interval of the simulation time and then have opposite phase
for another interval and so on; that is, the relation between
them varies with time in a dynamic manner. In this case,
scaling factors need to have some piecewise definition such as𝑓pw(𝑡) = (−𝑐)int(𝑡/𝑞), where 𝑐, 𝑞 are constants and int(⋅) returns
the quotient of integer division.This function changes its sign
every 𝑞 time units, more detailed as𝑓pw (𝑡) = (−𝑐)int(𝑡/𝑞)

= {{{𝑐 2𝑎𝑞 ≤ 𝑡 < (2𝑎 + 1) 𝑞−𝑐 (2𝑎 + 1) 𝑞 ≤ 𝑡 < (2𝑎 + 2) 𝑞, (15)
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Figure 4: (a) Construction of the linear combination of Liu and Financial systems with 𝑘2𝑥 = 𝑘2𝑦 = 𝑘2𝑧 = −0.1 and 𝑘3𝑥 = 𝑘3𝑦 = 𝑘3𝑧 = 0.8,
(b) attractor of the slave system successfully synchronized, and (c) time series of both master and slave systems successfully synchronized.

where 𝑎 is an integer value. The scaling factor 𝑘𝑥 plotted in
Figure 6(b) shows an example of 𝑓pw(𝑡). Moreover, there are
multiple other cases in which 𝑘𝑖𝑥, 𝑘𝑖𝑦, and 𝑘𝑖𝑧, 𝑖 ∈ {1, 2, 3},
could be functions of time. For example, a scaling factor may
equal 𝑓sc(𝑡) = 𝑐 + int(𝑡/𝑞), where 𝑐, 𝑞 are constants and int(⋅)
returns the quotient of integer division. This is a stair-case
function which performs scaling in a variablemanner as time
advances. The type of synchronization (antisynchronization)
and/or its scale changes every 𝑞 time units as shown in the
plot of 𝑘𝑦 in Figure 6(b). Another example is 𝑓pr(𝑡) = 𝑐 +(mod(𝑡/𝑞))/𝑞, where 𝑐, 𝑞 are constants and mod(⋅) returns

the remainder of integer division. This is a periodic ramp
function which is time-dependent too. The value of the
scaling factor starts at the value 𝑐, and then it increases within
every interval of 𝑞 time units until it resets to 𝑐 at the end
of each interval. The scaling factor 𝑘𝑧 plotted in Figure 6(b)
shows an example of𝑓pr(𝑡). Other examples, employingmore
complicated functions, can be applied similarly.

Figure 8 shows an example of generalized dynamic
switching synchronization in which Liu is set as the master
system for half the time, and then Financial system becomes
the master where CNN-3 cells are the slave during all
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Figure 5: Attractors of (a) the master systemwhen switching fromCNN-3 cells to Liu then to Financial system as a master each for one-third
of the simulation time and the resulting new (b) CNN-3 cells, (c) Liu, (d) Financial systems, and (e) time series successfully synchronized.
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Figure 6: (a) Static scaling factors 𝑘𝑥 = −1, 𝑘𝑦 = −0.5, and 𝑘𝑧 = 2 and (b) dynamic scaling factors 𝑘𝑥 = (−1)int(𝑡/50), 𝑘𝑦 = −0.5 + int(𝑡/50),
and 𝑘𝑧 = 1 + (mod(𝑡/50))/50 versus time.

simulation time. Scaling functions similar to those shown
in Figure 6(b) are used, but with different values of total
simulation time and 𝑞, where 𝑥 time series is scaled by 𝑘2𝑥 =(−1)int(𝑡/10) for 0 ≤ 𝑡 ≤ 20 and 𝑘3𝑥 = (−1)int(𝑡/10) for20 ≤ 𝑡 ≤ 40. 𝑦 time series is scaled by −0.5 + int(𝑡/10),
and 𝑧 time series is scaled by 1 + (mod(𝑡/10))/10. Each plot

in Figures 8(a)–8(c) shows the time series of the original
system which is then scaled to get the master response
according to the previously explained behavior of the selected
scaling functions. The values of the scaling functions in each
interval of time are shown on the plots and the obtained time
series follow them precisely. The master and slave responses
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Figure 7: Single master synchronization with static scaling factors with Liu system as master and the two other systems as slaves: (a) 𝑥 time
series where 𝑘2𝑥 = −1, (b) 𝑦 time series where 𝑘2𝑦 = −0.5, (c) 𝑧 time series where 𝑘2𝑧 = 2, and (d) resulting master and slave systems
successfully synchronized.

are successfully synchronized as further illustrated by the
coincident attractor diagrams shown in Figure 8(d). Similar
results can be obtained for other combinations of the systems
and types of synchronization detailed earlier.

From the shape of the attractor diagram shown in
Figure 8(d), it is noticed that the scaling factors can be
used to get new chaotic trajectories with time series and
attractors different from the well-known ones. Table 4
shows some examples illustrating the differences between
the attractors of the original systems and those of the
newly formed ones. It can, thus, be inferred that dynamic
scaling can generate different replicas of the attractor on
the same diagram enabling wider output ranges. The attrac-
tor diagrams constructed from scaled time series exhibit
new shapes of strange attractors with interesting behaviors.
Hence, they can be formulated and studied as novel chaotic
systems.

5. Discussion and Suggested Applications

In the previous section, simulation results were obtained at(𝛼, 𝛽, 𝛾) = (0.99, 0.99, 0.99) as stated in Section 2. The reason
for this choice of the values of fractional orders is that the
three utilized systems were shown to exhibit chaotic behavior

at this value.This is suitable for our purpose of demonstrating
chaotic synchronization and dynamic switching cases where
each system acts as a master for an interval of time. However,
the generalizedmathematical analysis carried out in Section 3
can be applied for different values of the fractional orders.
The effect of the fractional orders on the responses of the
three utilized systems has been briefly presented in [63–
65] and can be studied through simulations following the
experimental approach used in [36, 46]. Table 5 provides sev-
eral synchronization examples at (𝛼, 𝛽, 𝛾) = (0.95, 0.92, 0.9)
and (𝛼, 𝛽, 𝛾) = (1, 0.93, 0.87). The responses of master
system and slave system(s) are shown in case of single master
static switching synchronization, whereCNN-3 cells, Liu, and
Financial systems act as masters, respectively. The system of
CNN-3 cells exhibits stable response at these values of the
fractional orders, while the other two systems remain chaotic.
The phase plots show that themaster and slaves responses are
successfully synchronized irrespective of the response type
of the master system. Successful synchronization can also
be achieved for the other operation modes including linear
combination, dynamic switching, and static and dynamic
scaling factors.

These results illustrate another advantage of the pro-
posed synchronization scheme. In addition to changing the
chaotic response of the slave system from one form to
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Figure 8: Dynamic switched synchronization with dynamic scaling factors: (a) 𝑥 time series, (b) 𝑦 time series, (c) 𝑧 time series, and (d)
resulting master and slave systems successfully synchronized.

another, the scheme has the capability of controlling the
response type. Stable or periodic systems can be forced to
generate chaotic responses, while chaotic systems can be
stabilized.

A more generalized scheme can be designed to allow 𝑛
systems to have different (𝛼𝑖, 𝛽𝑖, 𝛾𝑖) for each system 𝑖, where𝑖 = 1, 2, . . . , 𝑛. Such a case has been proposed in few
researches such as [67–69]. However, these synchronization
schemes do not possess the scaling and switching capabilities
presented in our paper.

Each case of those proposed in Section 4 can be mapped
to an operating mode of master-slave communication as
discussed in Section 1.This includes one-to-one communica-
tion, one-to-many communication, multiple masters, mutual
interconnections with forward and backward communica-
tion, and role switching.

The introduced scheme can be adapted or interfaced with
other specific-purpose control blocks. For example, if it is
required to have adaptive switching between two identical
standbymaster systems for fairness ormaintenance purposes,
an external control signal can be used as follows. System 1 acts
as a master by setting 𝑆1 = 0 and 𝑘1𝑥, 𝑘1𝑦, and 𝑘1𝑧 have the
required values while 𝑆2 = 𝑘2𝑥 = 𝑘2𝑦 = 𝑘2𝑧 = 0 in order that
system 2 does not take place in the synchronization, and vice
versa when system 2 acts as a master.

The proposed scheme, which utilizes dynamic scaling
factors, can be useful for amplitude modulation applications

in which the amplitude of the output signal should be a
function of the input signal. Dynamic scaling factors can
play the role of information signal, which is modulated by
the chaotic dynamics of the system to give the modulated
signal. Demodulation can be done similarly by reversing the
operation.

6. Conclusions

In this paper, we have proposed a novel generalized switched
synchronization scheme among 𝑛 fractional-order chaotic
systems. The proposed scheme offers various capabilities
utilizing a set of dynamic switches and scaling factors.
Generalized mathematical analysis permits adapting the
switches and scaling factors to perform various functions.
The switches control the role of each system as a master
or a slave. Each system can either have a fixed role, that
is, master or slave, throughout the simulation time, which
is called static switching or change its role one or more
times in case of dynamic switching. The scaling factors
control the generalized relation between the original systems
from which the master system is built on the one hand
as well as the slave system(s) on the other hand. They
can also be static or dynamic according to the required
application. Moreover, in all of the presented cases, the
master system can be a single system or a combination of
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Table 4: New attractor diagrams formed by static and dynamic scaling of the original systems.
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two or more systems. The proposed scheme can also apply
different scaling factors to the time series of each state variable
to design new attractor diagrams. Generalized switched
synchronization, as presented in this paper, can fit many
applications such as master-slave communication models,
chaotic amplitude modulation, and secure communication
systems.

Future work includes updating the proposed scheme
to cover the case where the master and slave components
have derivatives of different fractional orders. The proposed

scheme can also be used to develop secure communica-
tion systems for multimedia applications including speech,
image, and video. Moreover, implementation issues need to
be considered in terms of computational complexity and
memory requirements. The results obtained for fractional-
order chaotic systems including fractional time derivatives
can be interpreted in terms of memory. Consequently, the
tradeoff between computational efficiency of the proposed
generalized synchronization scheme and the required accu-
racy should be considered in a hardware implementation.
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Table 5: Successful synchronization at different values of the fractional orders.

Orders System responses and single master synchronization results
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