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Chaotic systems appear in many applications such as pseudo-random number generation, text encryption, and secure image
transfer. Numerical solutions of these systems using digital software or hardware inevitably deviate from the expected analytical
solutions. Chaotic orbits produced using finite precision systems do not exhibit the infinite period expected under the assumptions
of infinite simulation time and precision. In this paper, digital implementation of the generalized logistic map with signed parameter
is considered. We present a fixed-point hardware realization of a Pseudo-Random Number Generator using the logistic map that
experiences a trade-off between computational efficiency and accuracy. Several introduced factors such as the used precision, the
order of execution of the operations, parameter, and initial point values affect the properties of the finite precision map. For positive
and negative parameter cases, the studied properties include bifurcation points, output range, maximum Lyapunov exponent, and
period length. The performance of the finite precision logistic map is compared in the two cases. A basic stream cipher system is
realized to evaluate the system performance for encryption applications for different bus sizes regarding the encryption key size,
hardware requirements, maximum clock frequency, NIST and correlation, histogram, entropy, and Mean Absolute Error analyses

of encrypted images.

1. Introduction

Chaos theory is a branch of mathematics which precisely
describes many of the dynamical systems that exhibit unpre-
dictable, yet deterministic, behavior. Chaotic generators can
be classified into discrete time maps and continuous time
differential equations. The remarkable importance of chaotic
iterated maps in both modeling and information processing
in many fields explains the need for their hardware analog and
digital realizations, for example, [1-4]. Digital realizations
are generally more immune to the imperfections of real
electronic systems and more secure due to the easiness of
encryption and exhibit greater noise immunity. Moreover,
they are composed of digital circuit components which are
cheap and easily produced on a single chip. Since early 1990s,
a new class of Pseudo-Random Number Generators (PRNGs)
based on the digitization of chaotic maps has gained an
increasing interest. Discrete time chaotic maps are easier to

implement on digital platforms and their generalized forms
[5, 6] could be fully utilized to fit multiple applications.
This paper is concerned with one of the most famous one-
dimensional discrete time chaotic maps: the logistic map.

The conventional logistic map is a quadratic nonlinear
map [7] given by

Xp+1 = f (xn’ /\) = Axn (1 - xn) > (1)

where x,, is the iterated variable of the map and A is a
control parameter. Despite the simplicity of its mathematical
relation that uses simple and computationally fast operators,
it is highly rich in information and indications that are very
useful in the field of chaos theory and chaotic systems. It has
also found its way, among other chaotic generators, to many
practical applications such as biology, physics, chemistry
[8-10], pseudo-random number generation [11], secure data
and image transfer techniques [12-17] with recent security
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FIGURE 1: (a) Graph of f(x) = Ax(1 — x). (b) Bifurcation diagram of f(x) versus the control parameter A.

reevaluation of some of them such as in [18], and financial
modeling [19, 20].

Generalized logistic map with signed parameter in which
the bifurcation diagram extends in both positive and negative
control parameter sides has been analyzed in [6]. It has been
shown that period doubling route to chaos occurs for convex
maps as well as concave maps. This is shown in Figure 1(a)
for different values of the control parameter A. The output in
negative control parameter side, called mostly positive map,
has a wider range that extends asymmetrically with alternat-
ing sign as shown in Figure 1(b) with suggested applications
in [6]. The key-points of the bidirectional bifurcation diagram
are illustrated in Figure 1(b) including bifurcation points and
output ranges in both sides which may be listed as follows:

(i) For A > 0, the first bifurcation point in the positive
side A,;, = 1, where the type of the first nonzero
solution is a fixed point. In addition, the upper bound
on the output x = 1 which takes placeat A, = 4.

max+
(ii) For A < 0, the first bifurcation point in the negative
side A;,;_ = —1, where the type of the first nonzero
solution is period-2. In addition, the lower and upper
bounds on the output are x_;,_ = —0.5 and x,,,,_ =
1.5, respectively, which take place at A,,,;, = —2.
Unseen behavior lies between the analytical study of
chaos and its digital representation where the effect on
dynamical properties is inevitable. Several methods of digi-
tization could come to mind such as the following: software
implementations in floating-point arithmetic formats, sim-
ulations in fixed-point formats, hardware realizations either
in ASIC or in FPGAs, and other digital implementations.
Software simulations of digital chaotic maps are criticized for
being unsuitable for direct application to hardware FPGAs
which imply specific assumptions.
In this paper, a hardware oriented analysis of finite pre-
cision logistic map using fixed-point arithmetic is presented

accompanied by a digital hardware implementation of PRNG.
The basic operations constituting the map are executed
individually in a sequential manner with the truncation
step implemented between them. Throughout our discussion,
four factors which affect the finite precision logistic map are
considered. Two of them are explicit and not new which are
the control parameter A and the initial point x,; however,
finitude adds up to their known effects. The other two factors
are introduced by the digital representation which are the
precision or bus size p and the order of execution f(x). A
slight perturbation in any of these factors can yield mas-
sively different responses with varied properties in low and
intermediate precisions. The effect of varying precision on
several properties of the generalized logistic map with signed
parameter and the differences from the analytical model
are discussed comparing positive and negative parameter
cases. A basic stream cipher system based on the PRNG
is downloaded on FPGA and tested with text and image
encryption applications.

The rest of this paper is organized as follows. First, digital
representation of chaotic systems and a literature survey on
previous related works are presented in Section 2. Then,
Section 3 discusses how the one-dimensional logistic map
can be represented in digital hardware realizations such that
it can work for either positive or negative parameter cases.
The assumptions required to simulate this representation in
software environments are also discussed. Different versions
of the map are proposed based on the order of execution of
the operations constituting its expression. In Section 4, two of
these versions are chosen primarily to conduct various exper-
iments and demonstrate results including the following: the
bifurcation diagram, its key-points, time series, periodicity of
the generated sequence, and maximum Lyapunov exponent
(MLE). The effects of varying precision, initial condition, and
order of execution on the type of solution are statistically
analyzed comparing positive and negative parameter cases.
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Section 5 presents a hardware realization of a stream cipher
system for text and image encryption applications based on
the conventional logistic map as a Pseudo-Random Number
Generator. The encryption performance, speed, and imple-
mentation area are evaluated at different bus sizes. NIST
randomness tests, correlation, histogram, entropy, and Mean
Absolute Error analyses of encrypted images are carried out
for different bus sizes. Finally, Section 6 summarizes the
contributions of this paper.

2. Digital Representation of Chaotic Systems

In the field of chaos-based communication and for practical
considerations, a design guide of a computationally efficient
PRNG using chaotic systems with finite precision is needed.
The reason why chaos-based PRNGs are suggested frequently
without paying attention to the effect of finite precision could
be owed to the 3-shadowing lemma. This lemma ensures that
there exists an exact chaotic orbit close to the pseudoorbit
with only a small error [21]. However, there is an argument
with strong evidences that this lemma cannot be applied to
digital chaos. Previous research efforts have attempted either
to come up with a theoretical formulation of the problem
and its consequences or to experimentally obtain results and
analyze them in the aim of acquiring full understanding of the
problem. In this experimental approach, several properties
of chaotic systems are used as indicators that can be used to
uncover security weakness hidden inside some digital chaotic
ciphers.

There are two aspects of regarding digitally implemented
chaos, either redefining the equation in a digital form and
confining outputs to the integer domain [22, 23] or digitally
implementing it in finite precision [24-30]. Since we are
concerned with digital implementations, a review of several
studies about the effect of finite precision on the properties
of chaotic systems is presented. The problem of simulating or
implementing digital chaos is composed of two parts: finite
time and finite precision. Sentences like steady state or the
limit as the number of discrete time steps approaches infinity
no longer carry the same meaning. The behavior of a limited
number of time samples can be recorded for some finite
precision; that is, there is no practical implementation that
is equivalent to infinite time or precision.

2.1. Continuous Time Chaotic Systems. Corless in [24] dis-
cussed numerical simulations, with finite time and precision,
of chaotic dynamical systems and how much they should
be trusted. He suggested that the computed orbit and the
accompanied value for MLE could be falsely interpreted
as chaotic (or nonchaotic). This could be owed to the ill-
conditioned nature of chaotic dynamical systems where
small errors in initial conditions or involved operations are
exponentially amplified with time. Consequently, no measure
exists of how much the actual response obtained shall deviate
from the expected behavior, and this deviation cannot be
tracked as time progresses.

Several recent studies for the effect of limited precision
on the properties of digitally implemented continuous time
chaotic systems have been conducted. For example, in [27,

28], fully digital implementations of several 3rd-order ODE-
based chaotic systems have been studied. The threshold
minimum precision required for chaos has been decided to
be in the range of 8 to 11 fractional bits.

It is expected in advance that simpler systems with less
dynamics such as one-dimensional discrete time logistic map
needs a higher threshold minimum precision. The variation
in the response is expected to be slower with varying the used
precision.

2.2. Discrete Time Chaotic Systems. Li et al. in [25] studied
digitization of one-dimensional piece-wise linear chaotic
maps (PWLCM) and suggested several ways to reduce its
negative effect. The effect of finite precision on the periodicity
of a PRNG based on the logistic map has been explored in
[26]. The algorithm employs truncation in a single-precision
floating-point environment after converting the binary32
format to a denormalized binary fraction. Truncation takes
place only after the execution of the whole expression,
considering the subtraction followed by two multiplication
operations in (1) as a single operation. However, this is not
suitable for a fixed-point arithmetic FPGA implementation.

3. Fixed-Point Representation of
the Logistic Map

Fixed-point representation uses integer hardware operations
controlled by a given convention about the location of the
fractional point. Our discussion focuses on computationally
efficient fixed-point implementations of chaos, specifically
one-dimensional logistic map. The reason is that fixed-
point arithmetic is significantly faster and less expensive
than an equivalent floating-point hardware implementation.
In addition, most commercial arithmetic logic unit (ALU)
hardware, for example, FPGAs, is based on it. Such hardware
buses typically offer between 8 and 64 bits of precision.

3.1. Assumptions of Fixed-Point Binary Representation. Using
finite precision fixed-point binary system, the evaluation of
the logistic map function is carried out in a similar manner to
a microprocessor instruction set; that is, it is subdivided into
a sequence of basic operations. MATLAB fixed-point toolbox
is used to simulate digital representation of the logistic map
on FPGA.

The integer parts of the included ranges, A € [-2,4]
and x € [-0.5,1.5], are totally representable in 4 bits in
twos complement coding. These ranges correspond to the
two maps: positive logistic map and mostly positive logistic
map as illustrated before in Figure 1. It is guaranteed that
the resulting value x € [-0.5,1.5] is bounded; that is, no
extra bits are needed for handling overflow conditions. The
total number of bits, or bus size, is denoted by p for precision
which is represented as p; integer bits and p fractional bits
such that p = p; + py.

Values of p starting from a lower bound of 8 correspond
to the least bus size offered by FPGAs, that is, 4 bits in
both the integer and the fractional parts. A reasonable upper
bound p = 27 resembles the equality of the number of
fractional bits p; = 23 to the number of bits in the
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(d) fa(x, 1) = (A(x - x.x))

(e) f5(x,A) = (Ax) = (A(x.x))

() fe(x,4) = (Ax) = (Ax)x)

FIGURE 2: Six different maps in fixed-point arithmetic.

fractional part f of the single-precision binary floating-point
representation, which is the smallest precision used in most
software implementations. Such upper bound is tentative and
changes frequently in the rest of the paper according to the
sensitivity of the studied property to precision. The following
assumptions are made in simulating digital representation of
the logistic map:

(i) The values of x and A and the output of each basic
operation are fixed-point variables stored in finite
length Registers.

(ii) All operations are carried out assuming truncation.

(iii) Two's complement coding representation is used.

3.2. Different Maps in Fixed-Point Arithmetic. The result of
the studied function given by (1) can be calculated in multiple
ways in fixed-point arithmetic. For instance, consider the
expressions shown in Figures 2(a), 2(b), and 2(c). Are
they equivalent? Is the associativity property maintained in
a fixed-point system? Moreover, the operations could be
grouped such that suboperations are performed in different
order as in Figures 2(d), 2(e), and 2(f). The six shown
alternatives have been chosen to be considered. The hardware
resources needed for executing each of them are also illus-
trated in the form of Registers and arithmetic units (adders,
multipliers, etc.).

Throughout the rest of the discussion, all results are
obtained by MATLAB starting at initial point x, = 0.5,
discarding the first 1,000 iterations and considering the next
500 ones, except where stated otherwise. Figure 3 shows
the bifurcation diagram versus the control parameter A at
p = 9, which is expected to exhibit different phases of
behavior as those shown in Figure 1(b). However, it could
be noticed that different orders of execution yield bifurcation
diagrams that are different from those expected regarding the
following: key-points, output range, transition between types
of responses, and density of points at ranges that are supposed
to exhibit chaotic behavior.

From the bifurcation diagrams, f;(x) and f¢(x) exhibit
smoother maps and a more similar behavior to that expected
from the logistic map compared to the other studied alterna-
tives. Hence, most of the following discussion concentrates on
these two versions of the logistic map, the different properties
that they exhibit, and how much they conform to the behavior
expected from the mathematical analysis of the map.

Various properties that have been considered as facts in
mathematical analysis of the one-dimensional discrete time
logistic map are violated in finite precision environments.
Several examples are detailed below.

(i) Initial points with a “1” in the least significant bit only,
that is, x, = 277/, could cause the response to die
out. In addition, any quantity less than 277 will be
considered zero after truncation to p fractional bits.

(ii) Analytically, it would be expected from (1) that two
initial points with difference = 1 yield the same
posttransient behavior, since they have the same orbit.
However, this property is not always satisfied in finite
precision case due to truncation effects.

(iii) The details of the bifurcation diagram over the whole
range of A might slightly alter starting at different
initial points. Figure 4 shows that the bifurcation
diagram differs from the previous case starting at
different initial point x, = 0.125.

4. Properties of the Selected Maps

In order to study the effect of increasing the number of
fractional bits and the impact of low precisions on the prop-
erties of logistic map, the bifurcation diagram of f;(x) versus
the control parameter A is plotted for different precisions in
Figure 5, while that of f,(x) is shown in Figure 6, both starting
at initial point x, = 0.5. The resulting diagrams reveal that
the properties of the logistic map are so much affected by
precision. These properties include the following: the key-
points of the bifurcation diagram, the number of levels or
the sequence of values at a fixed value of A, and the degree
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FIGURE 4: Bifurcation diagram versus the control parameter A for six different orders starting at x, = 0.125 at p = 9 (p; = 5 bits).

of chaos or how much chaotic is the behavior at values of A specifications of the logistic map utilized in various applica-

near A . orA

max min*

tions, specifically for generalized maps with extra parameters

as those proposed in [5, 6] and others. These key-points differ
4.1. Key-Points of the Bifurcation Diagram. The key-points  for fixed-point representation from the analytical expected
of the bifurcation diagram play an important role as design ~ behavior defined in Section 1 due to truncation effects.
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However, this difference decreases as p increases as discussed
below.

4.1.1.  Double-Precision  Floating-Point. Using  double-
precision floating-point calculations, Ay, = 0.969, x.., =
0.999738909465984, A, = -0.967, x =
—0.49974730424707, and x =

min—
max—

1.5. These values for
A are rounded to the third decimal digit after the point
and obtained comparing with epsilon machine (defined
in MATLAB as eps). The differences between the results
of double-precision floating-point calculations and the
expected results could be owed to their relative inaccuracy.
They do not satisfy neither infinite precision nor infinite
time conditions assumed analytically. Hence, floating-point

arithmetic implementations of chaotic generators and their
impact on the various properties need to be studied as well.

4.1.2. Fixed-Point Implementation. Using fixed-point map
versions f5(x) and f¢(x), let us consider the positive control
parameter side at first. Figure 7(a) shows the values of A,
for 8 < p < 26 for various initial points x, = {0.125,0.25,
0.375,0.5}. For the map f;(x), Figure 7(a) shows that A,
starts at values higher than its analytic value “1” at low
precisions and then starts to decrease gradually approaching
“17; on the other hand, f¢(x) seems insensitive to precision
from the viewpoint of the value of A, for these four values of
initial point. For output range, calculations are performed at
multiple initial points and then the average of these different
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results is considered. Figure 7(b) shows the average value of

the upper bound x,,, +,,, ON Tesponses starting at multiple

initial conditions versus different precisions. For both maps,

Xmaxe,,, Starts at values lower than its analytic value “1” at

low precisions, then starts to increase gradually, with some
fluctuations, approaching “1.”

Similarly, the key-points of the bifurcation diagram in the
negative control parameter side are studied. Figure 8(a) shows
the values of A,;_ where similar comments to the positive
control parameter case could describe the plot but for the
absolute value |A,,_| instead. Figure 8(b) shows the values of
Xmin-,, At different precisions, whereas Figure 8(c) shows the
values of X,

precision variation than f;(x). The average minimum value
x starts at low precisions with absolute values which

.- The map f¢(x) seems to be less sensitive to

min—,,

are lower than 0.5, whereas x . starts with values which

max—,,
are lower than 1.5. As precision increases, the key-points
approach their analytical values.

4.1.3. Sensitivity to Initial Conditions. From Figures 7(a) and
8(a), the values of A, and A;,_ seem insensitive to the value
of initial point x;. On the other hand, the effect of initial point
on the values of x .., Xin_»> and x,,._ cannot be avoided in
finite precision implementations especially at low precisions.
The value x,,,, occurs at A = 4, whereas x,,;,  and x,,._
occur at A = 2. Both values of A exhibit maximum chaotic
behavior, where sensitivity to initial conditions is a basic
characteristic of the bifurcation diagram. Analytically, the
“infinite” sequence generated at maximum chaotic behavior
has lower and upper bounds which “must” be reached. Yet, in
finite precision implementations, the length of the generated
sequence is limited by both finite precision and time. Thus, it
is not guaranteed whether its lower and upper bounds shall

coincide with the analytical values or not, especially at low
precisions.

4.1.4. Precision Threshold. By precision threshold, we mean
the precision below which the properties of the map severely
deteriorate and above which changes become less significant.
It does not mean that the behavior becomes exactly as the
analytical approach. From Figures 7 and 8, it is clear that the
values of the key-points derived through mathematical anal-
ysis are the asymptotes that finite precision values approach
as p — co. The threshold minimum precision for key-points
can be chosen as p = 23 for f5(x) and p = 20 for f,(x), for
instance.

4.2. Time Series. A chaotic posttransient response should
have a new value generated at each discrete time instant such
that no periodicity can be recognized. In this section, the time
series at values of A that are supposed to be chaotic are studied
in finite precision. The effects of varying the used precision
and the initial point at which the orbit starts are explained.

Values near A = 4 or A = -2 which exhibit the widest
chaotic response rich in applications are chosen. Figures 9
and 10 show the time series at A = 3.9375 of the maps f;(x)
and f4(x), respectively, starting at different initial conditions
for different precisions. This specific value corresponds to an
exactly representable fixed-point number with four fractional
bits, corresponding to p = 8 the narrowest precision that
is examined in our study. Generally, very low precisions
exhibit undesirable periodic behavior for almost all initial
conditions, and high precisions exhibit relatively long periods
for some or most of the initial conditions. Time series at some
combinations of p and x,, analytically expected to be chaotic
are periodic instead, for example, Figure 10(b).

For example, to study the reason behind the strange
result obtained in Figure 10(b), the cobweb plot is shown
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in Figure 11 which is a rough plot for the orbit of x
starting at different initial points x,, where the graph of
the map function is sketched together with the diagonal
line y = x. Although the four cobweb plots seem different,
the posttransient solution, colored in red and blue, in case
of x, = 0.125 or 0.25 is the same as the plot in case of
x, = 0.5 which fluctuates between six different values, that
is, period-6. The output states are as follows (these are the
decimal equivalents of the binary sequences represented
in the used fixed-point representation at p = 20, ie., 16
fractional bits): 0.5 — 0.984375 — 0.0605621337890625
— 0.2240142822265625 —  0.6844635009765625 —
0.85040283203125 — 0.5009307861328125 — 0.984375....
Any orbit, at the same p and A, including one of these
six values, consequently the others, will converge to the
same sequence of period-6. On the other hand, the case

X, = 0.375 exhibits a much longer sequence that could be
considered “chaotic.” Assuming infinite precision, period-6
solution could be obtained through solving f°(x,) = x
along with the stability analysis of the periodic point;
I(fﬁ)'(xp)l = 1. This would yield value(s) for A at which
period-6 solution starts to appear and the corresponding
values for x. According to [31], the value A = 3.9375 is close
to one of these values.

For further illustration, Figure 12 shows the time series for
A = 3.984375 which is representable in p > 10. Although the
neighborhood of this value does not contain near values that
generate periodic sequences, some combinations of p, and
x, could also yield faulty periodic response. Figure 13 shows
the time series at A = —1.984375 at different combinations of
f(x), p, and x;, to illustrate the impact of finitude on mostly
positive logistic map too. Calculations could be tracked
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FIGURE 9: Time series of f;(x) at A = 3.9375 starting at different initial conditions and various precisions.

similarly to illustrate how the recurrence settles to a specific
periodic sequence instead of the chaotic behavior expected
from mathematical analysis.

Consequently, the best expectation from the finite pre-
cision logistic map is a pseudo-random sequence with long
enough period. The cases with significantly short periods
depend on the combination of A, p, and x,, which might
drive us away from the expected chaotic behavior. The
phenomenon of deviation from chaotic behavior does not
appear in a continuous manner along with varying precision.
The solution could be chaotic at a certain precision p and then
become periodic at the next precision p + 1. The same note
could be used to describe the case fixing the used precision
and varying the initial point. Moreover, all the studied orders
of execution are subjected to these truncation effects in
low precisions that yield output sequences with rather short
period.

This section emphasizes the dependence of the type of
posttransient response on the initial conditions in low and

intermediate precisions. The effects of using p + 1 instead of
D> % + 6 instead of x,, (for small §), and any of the orders
fi(x),i € {1,2,3,4,5,6} are illustrated more in Section 4.3.
It is expected that, at relatively high precisions, x, and x, + &
mostly yield the same type of posttransient solution except
for some cases in which truncation accidentally drives the
solution into a shorter period. This is not to be confused with
the property of sensitivity to initial conditions and whether
they are two different posttransient solutions or not which is
discussed in [29].

From the previous discussion and visually inspecting
further time series, we could define the threshold minimum
precision, according to the time series, as the precision at
which the response “appears” chaotic for most of the initial
points allowed by precision. Values close to those suitable for
bifurcation diagrams and key-points can be suggested.

4.3. Periodicity of the Generated Sequence. The sequences
corresponding to different parameters (p, f(x), A, and x;)
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FIGURE 10: Time series of f,(x) at A = 3.9375 starting at different initial conditions and various precisions.

which are generated by finite precision logistic map do
not follow an identified, continuous manner as detailed in
the previous subsection. It would be quite useful to point
out which combinations of the parameters yield responses
other than those expected through mathematical analysis.
Reaching such combinations could be described as an attempt
to solve the inverse problem where the value of x,,,; is known
and the question is as follows: what is the value of x,, that
had yielded it?, for given values of p and A, as well as an
order of execution f(x). The answer to such a question is not
straightforward, because successive values of x are held in a
finite length Register. Consequently, the real number, possibly
irrational, yielded by solving the inverse problem should be
mapped to finite precision fixed-point arithmetic. However,
the nonlinearity of the relation representing the logistic map
makes it hard to decide whether the mapped value should be
lower or higher than the analytical solution. The number of
steps above or below in the used precision cannot be easily
decided either.

The type of posttransient response of the recurrence is
obtained in terms of the length of the period formed by the
successive solutions. A posttransient sequence of k unique
values is described as “period-k” which is affected by the four
factors (p, f, A, x,). For example, at A = 4 and p = 8§, our
experiments yield period lengths of 1 for the 15 available initial
points using orders f;, f,, fs5,and fs. However, they yield the
same results as [26] with period lengths of either 1 or 3 at the
same corresponding initial points using f, and f;. Moreover,
lower values of A which were not considered by [26] are found
out to yield longer period length of 4 at several combinations
of A, x, and f emphasizing how the introduced factors affect
the period length.

Figure 14(a) shows the maximum period, or k, obtained
with different orders of execution plotted versus precision
for A from 3.8125 to 4 in steps of 277/ and all initial points
allowed by the precision. It seems that f5(x) = (A(1 -
x))x yields relatively higher periods. Some other orders are
acceptable where the best are f,(x), f;3(x), and f(x) as
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FIGURE 12: Time series of f;(x) at A = 3.984375 starting at x, = 0.25 and various precisions.

decided before from the bifurcation diagrams in Section 3.
It could be noticed that higher precisions provide more
levels among which the solution(s) could take their values
allowing higher values for k. Figure 14(b) for A from -2 to
—1.8125 shows how the logistic map with negative control
parameter exhibits longer periods than that with positive
control parameter and at lower precisions. In addition, for
selected combinations of the factors, mostly positive map
exhibits more alternatives for unique values of k with a
longer maximum period, for example, f; and fq at p = 11.
This indicates some merits of the logistic map with negative
control parameter over the conventional logistic map with
positive control parameter.

It would be expected that the sequence period is governed
by the maximum number of levels allowed by the chosen pre-
cision, for example, 2/ for A > 0. Yet, this factor represents
a rather loose upper bound imposed by the used precision.
The behavior of the studied map and whether its output
sequence covers all the allowed levels or not are another
important point to consider which has been discussed in
[26]. For instance, consider p = 13, and the hypothetical
maximum number of levels equal 2° = 512 levels. However,
experimental results show that the maximum achievable
period or number of distinct levels before repeating the
sequence is roughly 50 for positive logistic map and 70 for
mostly positive logistic map. Hence, the dependence of the
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obtained period length on the used precision p does not
follow a linear scale. The efficiency of filling the allowed levels
is still insufficient in rather low and intermediate precisions.

Figure 15 shows all unique periods obtained at a given
precision for f;(x). The legend shows the different colors
corresponding to a given period k. Figure 15 illustrates that
increasing the used precision provides more combinations
of the parameter A and the initial point x, as expected. As
precision p increases, the number of alternatives for ( f, x,, A)
increases exponentially and the statistics are limited by huge
processing time and memory requirements. In addition,

the number of obtained unique periods of output sequence
increases with each bit of precision increased for low and
intermediate precisions. After reaching a high enough pre-
cision threshold, it is expected that the number of obtained
unique periods approaches settling. Values close to these
obtained before in [29] may result from some combinations,
while other combinations may uncover surprising findings.

4.4. Maximum Lyapunov Exponent. Maximum Lyapunov
exponent (MLE) is an indication whether the system exhibits
chaotic behavior or not as it measures the rate of divergence of



Complexity 13

{ sssssEEEEENEEEEEREEEERERRNENRRREE 4
RS SEUNG SR USSR
e fon
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE (EEEREr EEE e R R R
3951 R Ll R

E N EE S E NN NEENEEE N EENENENENENEEEEDN
A 39 ) 39
-....-.-.-...--.‘--...---.....-.
e - - - T - - - L
B85 L 3.85
..............._...............
EENEE BN = N Em e N D EEE W S
| - 1 |
‘ : : —
3.8 " 3.8 ;
0 0.5 1 0 0.5 1
X X0
| 8 —=a 19
—a 1 —=u 2 9 =22
—a 2 —a 3 —a 10
—a 3 —u 4 = 12
—® 6 5 —=a 13
9 —m 6 —a 14
—a 7 —a 16
(@ p=9,1=38125:27 : 4 (b) p=11,1=3.8125:27 : 4
-1.8 . - - -1.8 : : T
- - - — -
: O O T L B S E g Wmm% 58 B g
B B S S B e N S EE N E e BN NS M SN RN EE A ERI R
-1.85 - .- Cr .- C .- .- BRI -1.85 Iom 1 [ | -— [ | IR T T B
[ . - R
T T
9 195 O N W SN e . L = & B BB EE R R
_15. . . . . . . . L . . 4 —1. G " b=
. . . EEE N ] BN B N .
-2 -2
~0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.5
X0 X0
_— —a 1 8 —=a 15
.2 —a 2 9 —n 16
a3 —= 3 —a 10 519
a5 —m 4 = 11 —a23
6 5 —= 12
e —= 6 —= 13
—m 7 = 14
() p=9A=-2:27:-18125 (d) p=11,A=-2:27 : -1.8125

FIGURE 15: All the generated period lengths in the studied ranges of parameter A and all initial points allowed by p for f;(x) and different
precisions.



14

R
079\
\
\\ _ .\
. it
- _*‘f—“ e o
r “o-- " -0
0.6 | | 4
)
& /
= !
1
0.5} !
1
1
II
1
®--9
0.4 . . . . .
18 20 22 24 26 28 30
p

- - Analytical derivative formula
-®- Forward difference formula

()

Complexity
0.7 T T T T T
[ ]
I\
I\
RN
J \
1 \
N \
[ ]
| i
0.65 ot Py \
\ \
o e // N r""’j““ -o-o--9
— AN \ :7 - _/ N e
s A \ ~0
II ‘ \ II
0.6 \ /
/ ! /
i ! /
¢ o
\ 1
\ II
\\ !
0.55 \/
1 Y 1 1 1 1
18 20 22 24 26 28 30
P

- - Analytical derivative formula
- ®- Forward difference formula

(b)
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nearby initial points. Two suggested methods for calculating

MLE in finite precision are explained in the next two
subsections.

4.4.1. Analytical Derivative Formula. MLE for discrete time
maps [7] is given by

n—-1
MLE = lim (%;ln'f’ (x,-)|>,

where In is the natural logarithm and f'(x;) is the first
derivative of the map equation with respect to x at x = x;
in addition to choosing n large enough; for example, n =
50,000 for MLE value to reach its steady state. In the analytical
derivative formula, we calculate MLE of the finite precision
logistic map as follows:

2)

n 1

MLE——ZlnM 1-2x;)].

l 0

(3)

4.4.2. Numerical Approximation of First Derivative. The fol-
lowing discussion attempts to investigate whether the numer-
ical approximations for first derivative are more compatible
with a discrete map than continuous differentiation rules
yielding f'(x;) = A(1 - 2x;). Consider the forward difference
approximation of the first derivative

! f (xi + A) B
f (xi) = A (4)

Substituting (4) in (2) and using the properties of logarithm,
we get

f (xi).

Zl 500 0) = )

; (5a)

n—1
MLE = %;ln|f(xi+A)—f(xi)| ~InA, (5b)

where the minimum value for A theoretically equals 277/
which is the minimum representable value. However, for
practical issues and to avoid overflow, A is set to a quite
higher value. Both (5a) and (5b) were found to be equivalent
in double-precision floating-point and match the analytical
method for relatively high precisions. Applying the one-
dimensional time series to MLE calculation tools such as [32]
used in [27, 28] can be considered as a third approach.

A threshold minimum precision of p > 22 from the
viewpoint of MLE calculation can be suggested as illustrated
by Figures 16 and 17. However, results obtained in low
precisions make us doubt the validity of both approaches for
calculating MLE in rather low precisions and the reliability of
the numbers computed through them in deciding how much
chaotic a system is. However, the problems in calculating
MLE using both methods are barely noticed at quite higher
precisions and dominate only at relatively low precisions p <
22 as previously mentioned.

We conclude that, at rather low precisions, MLE cannot
be used as a standalone indicator of chaotic behavior without
considering the corresponding sequence length. The value of
MLE calculated through either of the two methods could be
falsely positive while the output sequence is clearly periodic.

This result comes in accordance with the discussion presented
in [24, 25].

5. Encryption Applications

A Pseudo-Random Number Generator (PRNG) is realized
using the conventional logistic map (1), as shown in Figure 18.
The inputs of the system are the clock, Reset, A, and x,,. The
arithmetic unit is used to compute x,,,, using x,, and A. The
Register is used to provide x,, to the arithmetic unit. The value
of x,, is updated with Multiplexer’s output every clock cycle
(iteration). In case of Reset (Reset = 1), the Multiplexer will
provide x, to the Register. Otherwise, the Multiplexer will
pass x,,,; to the Register. This unit is realized using VHDL
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F1GURE 18: Hardware realization of Pseudo-Random Number Gen-

erator.

and synthesized on Xilinx using XC5VLX50T as the target
FPGA. Table 1 shows the hardware implementation area and
the maximum clock frequency for different bus sizes.
A basic stream cipher system is realized as shown in
Figure 19. The ciphering process is based on Xoring the
input data with a stream of random numbers. The PRNG,
presented in Figure 18, is used to output the random numbers,
where A and x, are used as the encryption key. Hence,
the keyspace is 2°F. Every clock cycle the system generates
a new random number (RN), captures a new byte from
the input data, and Xores the 8 least significant bits of the
generated RN with the input byte. The system is realized
using VHDL and synthesized on Xilinx using XC5VLX50T.
Table 2 summarizes the synthesis results for different bus
sizes. The system’s performance, regarding the speed and
implementation area, improves by decreasing the size of the
bus. Unfortunately, decreasing the size of the bus leads to a
reduction in the size of the encryption key which makes the
system vulnerable to brute force attacks. Thus, the size of the
bus must be adjusted to satisfy the security level, speed, and
hardware resources.

Input Output
(7:0) XOR (7:0)
Reset
I
xo (p—1:0) —
Ap-1:0)—  PRNG X (7:0)
clk —

FIGURE 19: Stream cipher system for encryption applications.

The stream cipher system is downloaded on FPGA and
tested with a text encryption application. The system displays
the input word on the first line of the Kit's LCD screen,
encrypts the word using the input key, and displays the
encrypted word on the second line of the screen. Figure 20
shows the results of the prototype for different bus sizes
and encryption keys. The system succeeds in encrypting the
input word (Hello World 2016), for all test cases. However,
in Figures 20(b) and 20(d), there is a relation between the
input text and the ciphered text which leads to poor encryp-
tion. In (b), the characters “I’; “space”; and “0” are always
transformed to “d”; “(”; and “g,” respectively. Similarly, in (d),
the characters “I”; “space”; and “o” are always transformed to
“}’; “17; and “—,” respectively. This is due to the fact that for
A = 2 the solution of the logistic map does not bifurcate as
illustrated previously in Figure 3. Thus, in order to improve
the encryption performance, the values of A must be close to
4.

Moreover, Table 3 shows the encryption results for a
famous quote by Mahatma Gandhi [33] using 27-bit bus
size and two different keys, (xy,,A,) = (0.5078741312,
3.7501969337) and (x,,,A,) =  (0.7578741312,
3.7501969337). The number of different bits between
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TABLE 1: Synthesis results for the logistic map using different bus sizes.
Bus size Slice Registers (28800) Slice LUTS (28800) DSP48Es (48) Maximum clock frequency
10 10 21 2 104.716 MHz
14 14 29 2 104.251 MHz
18 18 37 2 103.873 MHz
20 20 183 2 79.590 MHz
27 27 253 4 61.812 MHz
TABLE 2: Synthesis results of the stream cipher system.
Bus size Slice Registers (28800) Slice LUTs (28800) DSP48Es (48) Maximum clock frequency
10 10 31 2 104.716 MHz
14 14 37 2 104.251 MHz
18 18 45 2 103.873 MHz
20 20 191 2 79.590 MHz
27 27 261 4 61.812 MHz
TABLE 3: Encryption results for a famous quote using a bus size of 27 bits and two different keys.
Plain text Live as if you were to die tomorrow. Learn as if you were to live forever. ..

Ciphertext (x,, ;)
Ciphertext (x,,,4,)

2A003yTy{A@O0[fBNH26-6ERIA)§1 X imBgix y6OC " XViilie00znEnCg¥%&«; DX1a
Y#6|AG3aCFE; U Ovc! 1°C7YA$2@RI#AD, .° =i At = esO%iitUIALaleIB6aymiUESD +

Bus size = 8 bits
A =375 A=2
x9=0.5 xo = 0.5

(a) (b)

Bus size = 27 bits
A = 2.000008464
xp = 0.500061512

Bus size = 27 bits
A = 3.750008464
xo = 0.500061512

(© (d)

FIGURE 20: Results of the prototype for different bus sizes and encryption keys.

these two keys is reduced to one bit only in order to test the
system’s key sensitivity. The results show that the encrypted
sentences are totally different which imply that the key
sensitivity is high.

The randomness of the PRNG is usually tested by the
standard NIST suite [34] in order to ensure high security
performance. Accordingly, a VHDL test bench has been
implemented to interface the Xilinx with the NIST suite. This
test bench is used to generate a text file which includes the
8 LSBs of 125000 successive iterations. The PRNG must pass
all the NIST tests in order to be considered as true random
source. The results of the NIST test, for 8-bit bus size up to 45-
bit bus size, are summarized in Table 4. For all tests the initial
point x, is set to 0.5 + 27" while A is set to 4 — 277/, where

P is the number of fractional bits. The threshold bus size for
passing all the NIST tests is 45 bits. As the bus size is decreased
below this threshold, the number of reported failures starts
to increase until the PRNG fails in all the tests for 8-bit bus
size. The system succeeds in all the NIST tests for any bus size
greater than 45 bits.

Moreover, the system has been tested with an image
encryption application as shown in Table 5. The standard gray
color Lena (256 x 256) has been supplied to the stream
cipher system in Figure 19. Three bus sizes, 11 bits, 12 bits, and
45 bits, have been used in the analysis.

The vertical, horizontal, and diagonal pixel correlation
coeflicients p are calculated using (6a), (6b), and (6¢), where
N is the total number of pixels selected from the image and
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TABLE 6: Synthesis results of the 45-bit stream cipher system.

Resource Stream cipher system Stream cipher system with HDMI
Slice Registers (28800) 45 278

Slice LUTs (28800) 326 936

DSP48Es (48) 20 20

Maximum clock frequency 43.530 MHz 43.513 MHz

(b)

FIGURE 21: Standalone image encryption system. (a) Decrypted image. (b) Encrypted image.

(x(i, j) and y(i, j)) are two adjacent pixels. For highly secured
image p must be very close to zero.

| N | N LN
cov (x, y) = ﬁzl: <xi_ﬁzxj><yi_ﬁ2yj>> (6a)
i= j=

j=1

1Y AR
D(x) = NZ(x,-—NZxJ) , (6b)

i=1

cov (x, y)
P= : (6¢)

V(D (xDA(D(y))

The histogram analysis is used to observe the distribution
of the pixel’s color intensity. For highly secured image the
observed count for each of 2 color levels must be the same
over the entire image.

The entropy of the ciphered image is calculated using (7)
where p(s;) is the probability of symbol s;. p(s;) is computed
by dividing the observed count of s; in the ciphered image by
the size of the image. For highly secured image the entropy
must be close to 8.

28
Entropy = - p (s;)log,p () )
i=1
The Mean Absolute Error (MAE) between the original
image P and the ciphered image C is calculated using (8),
where i and j are the pixel indices and M and N are the width
and height of the image, respectively.

1 N M
MAE = M—XNZZ |P (i, j) = C, (i, j)] - (8)

i=1j=1

The encryption analysis in Table 5 shows poor results
for the 11-bit bus size. Fortunately, as the bus size increases,
p coeflicient approaches 0, the pixels” intensity distribution
becomes flat, entropy approaches 8, and MAE increases. The
best encryption result is achieved by setting the bus size to 45
bits which is identified previously in the NIST analysis.

Table 6 shows synthesis results of the 45-bit stream cipher
system in addition to standalone encryption system that
displays the encrypted and decrypted image on a screen
through an HDMI connector. The “Lena” image is stored in
the internal RAM of the FPGA. Figure 21 shows the proposed
standalone image encryption system.

The proposed stream cipher system, with 8-bit up to 27-
bit bus size, was acceptable in the text encryption application
due to the small amount of input data. However the NIST and
image encryption analysis have showed that it is necessary
to extend the bus size to 45 bits in order to successfully
encrypt large amount of data. The performance can be fur-
ther enhanced through feedback, delay elements, nonlinear
blocks, and permutation stages as well as postprocessing
techniques to get better results for security and sensitivity
analyses.

6. Conclusions

In this paper, a methodology for fixed-point simulation of
the generalized one-dimensional logistic map with signed
parameter and an equivalent hardware realization were
presented. Criteria for choosing the bus size for digitally
implemented chaotic systems and specifying the number of
integer bits were suggested. Various numerical simulations
for the properties of the finite precision map over the available
precisions, orders of execution, parameter, and initial point
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were carried out in comparison with those obtained through
mathematically analyzing the map over the infinite real
field. These factors were shown to affect several properties
including the following: the bifurcation diagram, its key-
points, periodicity of the generated sequence, and maxi-
mum Lyapunov exponent for positive and negative control
parameter cases. Moreover, a hardware realization of a stream
cipher system for text and image encryption applications
based on the conventional logistic map as a Pseudo-Random
Number Generator was presented. Encryption results show
the trade-off between security level, on the one hand, and
speed and hardware resources on the other hand. The longer
period lengths provided by mostly positive map suggest its
use as one remedy for the problem of short cycles of finite
precision chaotic maps compared with other PRNGs. It can
be an additional enhancement beside using higher finite
precisions, cascading multiple chaotic systems, and using
perturbation based systems for either the control param-
eter or the iterated variable with different configurations.
Scaling factors can further provide wider output ranges and
hence increase period lengths. Moreover, we recommend
that future implementations of chaotic systems on digital
platforms consider the listed factors and their effects on
various properties and then provide their implementation
details for reproducibility. For example, we have shown that
different orders of execution and parameter values yield
different period lengths. For finite precision systems, we do
not guarantee that A = 4 or which order of execution yields
the longest period. Hence, the different alternatives need
to be considered similar to how initial conditions effect is
considered. The procedure presented in this paper can be
carried out for other generalized versions of the logistic map
and other chaotic systems according to the allowed ranges
of different parameters in order to study the impact of finite
precision fixed-point implementation on their properties.
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