1,161 research outputs found
Simulating Ability: Representing Skills in Games
Throughout the history of games, representing the abilities of the various
agents acting on behalf of the players has been a central concern. With
increasingly sophisticated games emerging, these simulations have become more
realistic, but the underlying mechanisms are still, to a large extent, of an ad
hoc nature. This paper proposes using a logistic model from psychometrics as a
unified mechanism for task resolution in simulation-oriented games
Leaf:wood allometry and functional traits together explain substantial growth rate variation in rainforest trees
Plant growth rates drive ecosystem productivity and are a central element of plant ecological strategies. For seedlings grown under controlled conditions, a large literature has firmly identified the functional traits that drive interspecific variation in growth rate. For adult plants, the corresponding knowledge is surprisingly poorly understood. Until recently it was widely assumed that the key trait drivers would be the same (e.g. specific leaf area, or SLA), but an increasing number of papers has demonstrated this not to be the case, or not generally so. New theory has provided a prospective basis for understanding these discrepancies. Here we quantified relationships between stem diameter growth rates and functional traits of adult woody plants for 41 species in an Australian tropical rainforest. From various cost-benefit considerations, core predictions included that: (i) photosynthetic rate would be positively related to growth rate; (ii) SLA would be unrelated to growth rate (unlike in seedlings where it is positively related to growth); (iii) wood density would be negatively related to growth rate; and (iv) leaf mass:sapwood mass ratio (LM:SM) in branches (analogous to a benefit:cost ratio) would be positively related to growth rate. All our predictions found support, particularly those for LM:SM and wood density; photosynthetic rate was more weakly related to stem diameter growth rates. Specific leaf area was convincingly correlated to growth rate, in fact negatively. Together, SLA, wood density and LM:SM accounted for 52 % of variation in growth rate among these 41 species, with each trait contributing roughly similar explanatory power. That low SLA species can achieve faster growth rates than high SLA species was an unexpected result but, as it turns out, not without precedent, and easily understood via cost-benefit theory that considers whole-plant allocation to different tissue types. Branch-scale leaf:sapwood ratio holds promise as an easily measurable variable that may help to understand growth rate variation. Using cost-benefit approaches teamed with combinations of leaf, wood and allometric variables may provide a path towards a more complete understanding of growth rates under field conditions
The Changing Eigenfrequency Continuum during Geomagnetic Storms:Implications for Plasma Mass Dynamics and ULF Wave Coupling
Geomagnetic storms are one of the most energetic space weather phenomena. Previous studies have shown that the eigenfrequencies of ultralow frequency (ULF) waves on closed magnetic field lines in the inner magnetosphere decrease during storm times. This change suggests either a reduction in the magnetic field strength and/or an increase in its plasma mass density distribution. We investigate the changes in local eigenfrequencies by applying a superposed multipleâepoch analysis to crossâphase spectra from 132 geomagnetic storms. Six ground magnetometer pairs are used to investigate variations from approximately 3 4, the eigenfrequencies decrease by as much as 50% relative to their quiet time values. Both a decrease in magnetic field strength and an increase in plasma mass density, in some locations by more than a factor of 2, are responsible for this reduction. The enhancement of the ring current and an increase in oxygen ion density could explain these observations. At L < 4, the eigenfrequencies increase due to the decrease in plasma mass density caused by plasmaspheric erosion
Environmental associations of abundance-weighted functional traits in Australian plant communities
Predictions of how vegetation responds to spatial and temporal differences in climate rely on established links with plant functional traits and vegetation types that can be encoded into Dynamic Global Vegetation Models. Individual traits have been linked to climate at species level and at community level within regions. However, a recent global assessment of aggregated community level traits found unexpectedly weak links with macroclimate, bringing into question broadscale traitâclimate associations and implicating local-scale environmental differences in the filtering of communities. To further evaluate patterns in light of these somewhat contradictory results, we quantified the power of macro-environmental variables to explain aggregated plant community traits, taking advantage of new trait data for leaf area, plant height and seed mass combined with a national survey that records cover-abundance using consistent methods for a large number of plots across Australia. In contrast to the global study, we found that abundance-weighted community mean and variance of leaf area and maximum height were correlated with macroclimate. Height and leaf area were highest in wet (especially warm, wet) environments, with actual evapotranspiration explaining 30% of variation in leaf area and 26% in maximum height. Seed mass was weakly related to environment, with no variable explaining more than 5% of variance. Considering all three traits together in a redundancy analysis, the complete set of environmental variables explained 43% of variation in site-mean traits and 29% of within-site trait variance. While significant trait variation remains unexplained, the traitâenvironment relationships reported here suggest climatically-driven filtering plays a strong role in assembling these vegetation communities. Regional assessments using standardised species abundances can therefore be used to predict aspects of vegetation function. Our quantification of plant community trait patterns along macroclimatic gradients at continental scale thereby contributes a much-needed functional basis for Australian vegetation.Greg R. Guerin, Rachael V. Gallagher, Ian J. Wright, Samuel C. Andrew, Daniel S. Falster, Elizabeth Wenk, Samantha E.M. Munroe, Andrew J. Lowe, Ben Sparro
Search for the glueball candidates f0(1500) and fJ(1710) in gamma gamma collisions
Data taken with the ALEPH detector at LEP1 have been used to search for gamma
gamma production of the glueball candidates f0(1500) and fJ(1710) via their
decay to pi+pi-. No signal is observed and upper limits to the product of gamma
gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have
been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) <
0.31 keV and Gamma_(gamma gamma -> fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV
at 95% confidence level.Comment: 10 pages, 3 figure
Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV
A search for pair-production of supersymmetric particles under the assumption
that R-parity is violated via a dominant LQDbar coupling has been performed
using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV.
The observed candidate events in the data are in agreement with the Standard
Model expectation. This result is translated into lower limits on the masses of
charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for
m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81
GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the
95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure
Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events
The - oscillation frequency has been measured with a sample of
23 million \B\bar B pairs collected with the BABAR detector at the PEP-II
asymmetric B Factory at SLAC. In this sample, we select events in which both B
mesons decay semileptonically and use the charge of the leptons to identify the
flavor of each B meson. A simultaneous fit to the decay time difference
distributions for opposite- and same-sign dilepton events gives ps.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
Using a simple expert system to assist a powered wheelchair user
A simple expert system is described that helps wheelchair users to drive their wheelchairs. The expert system takes data in from sensors and a joystick, identifies obstacles and then recommends a safe route. Wheelchair users were timed while driving around a variety of routes and using a joystick controlling their wheelchair via the simple expert system. Ultrasonic sensors are used to detect the obstacles. The simple expert system performed better than other recently published systems. In more difficult situations, wheelchair drivers did better when there was help from a sensor system. Wheelchair users completed routes with the sensors and expert system and results are compared with the same users driving without any assistance. The new systems show a significant improvement
- âŠ