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Abstract

Predictions of how vegetation responds to spatial and temporal differences in climate rely on established links with plant functional
traits and vegetation types that can be encoded into Dynamic Global Vegetation Models. Individual traits have been linked to climate
at species level and at community level within regions. However, a recent global assessment of aggregated community level traits
found unexpectedly weak links with macroclimate, bringing into question broadscale trait—climate associations and implicating
local-scale environmental differences in the filtering of communities. To further evaluate patterns in light of these somewhat contra-
dictory results, we quantified the power of macro-environmental variables to explain aggregated plant community traits, taking
advantage of new trait data for leaf area, plant height and seed mass combined with a national survey that records cover-abundance
using consistent methods for a large number of plots across Australia. In contrast to the global study, we found that abundance-
weighted community mean and variance of leaf area and maximum height were correlated with macroclimate. Height and leaf area
were highest in wet (especially warm, wet) environments, with actual evapotranspiration explaining 30% of variation in leaf area and
26% in maximum height. Seed mass was weakly related to environment, with no variable explaining more than 5% of variance. Con-
sidering all three traits together in a redundancy analysis, the complete set of environmental variables explained 43% of variation in
site-mean traits and 29% of within-site trait variance. While significant trait variation remains unexplained, the trait—environment
relationships reported here suggest climatically-driven filtering plays a strong role in assembling these vegetation communities.
Regional assessments using standardised species abundances can therefore be used to predict aspects of vegetation function. Our
quantification of plant community trait patterns along macroclimatic gradients at continental scale thereby contributes a much-needed
functional basis for Australian vegetation.
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Introduction

Plant functional traits provide a key link between the
environment, species occurrences and ecosystem function
(Jamil et al. 2013). Size traits are important axes of plant
ecological strategy and affect competitive ability across their
expression in leaves, plant stature and seeds (Westoby 1998;
Diaz et al., 2016; Dirks et al. 2017). Leaf size affects leaf
temperature and light capture for photosynthesis and, con-
sidered across the world’s species, generally increases
towards the equator where there is a predominance of hot,
wet and sunny environments (Wright et al. 2017). Maximum
plant height is limited by the ability of canopy leaves to
maintain turgor and relates to water availability and compe-
tition for light (Moles et al. 2009; Klein et al. 2015; Falster
& Westoby 2003; Falster et al. 2017). Seed mass reflects
evolutionary  history and  regeneration  strategy
(Moles et al. 2005a), and is higher in warm, wet habitats at
low latitudes (Moles & Westoby 2003; Moles et al. 2005b)
and in shaded habitats (Foster 1986; Westoby et al. 2002).
Plants with lower stature and smaller leaves with conserva-
tive nutrient acquisition strategies are expected on nutrient-
impoverished soils (Hill 1998; McDonald et al. 2003;
Ordonez et al., 2009). Via their influence on function, traits
contribute to differential success across environmental gra-
dients, generating a link between traits, species distributions,
and environment (Shipley et al. 2006).

If plant communities are environmentally determined, func-
tional differences relating to tolerances and competitive ability
should be apparent along macroclimatic gradients
(Shipley et al. 2006). Average trait values aggregated at local
community level and functional diversity of species within
map grid cells have been found to vary predictably with
regional climate and elevation (Sandel et al. 2010;
Hulshof et al., 2013; Moles et al. 2014; Andrew et al. 2021).
Indeed, Dynamic Global Vegetation Models, which model
vegetation function in terms of primary production and fluxes
of water and nutrients, seek to encode mechanistic links with
macroclimate and traits as a basis for predicting vegetation dis-
tribution and carbon cycling under climate change
(Berzaghi et al. 2020). Theory suggests that environmental
conditions filter possible species trait values, leading to com-
munity convergence and lowered trait variance (Bernard-
Verdier et al. 2012; Bruelheide et al. 2018). Trait convergence
has been detected both continuously along environmental gra-
dients and at the resources-scarce extremes of gradients (Ber-
nard-Verdier et al. 2012). These trait-environment relationships
for both community mean and variance are strongly influenced
by the relative abundances of different species within commu-
nities (Bernard-Verdier et al. 2012; Wieczynski et al. 2019),
which suggests that incorporating knowledge about relative
abundances may strengthen understanding of trait—environ-
ment links (Grime 1998).

Previous global analyses found strong trait—environment
relationships based on individual species patterns or aggrega-
tions of <1,000 vegetation plots (Wright et al. 2004;

Wright et al. 2005; Wright et al. 2017; Zanne et al. 2018). In
contrast, recent global-scale analyses, combining unprece-
dented data on plot-based relative abundances and species
traits, have revealed unexpectedly weak relationships between
mean trait values and environment, bringing into question the
importance of biogeographic gradients in traits for understand-
ing global vegetation. Bruelheide et al. (2018) tested a series of
hypotheses relating aggregated community traits to macrocli-
matic controls by analysing >1.1 million field plots with
matching species trait data (Kattge et al. 2020). The relation-
ships revealed were weak, suggesting factors such as distur-
bance, microclimate or small-scale soil differences may shape
plant communities (Batori et al. 2017).

The degree to which macroclimate controls trait variation, as
revealed via plot-based inventories, is important for forecasting
vegetation form and function. Conflicting results bring into
question our ability to map traits at community level based on
macroenvironment, indicating more data are needed to resolve
this question. Historically, an impediment has been a paucity
of plot and trait data covering large spatial scales
(Stahl et al. 2014). Recent efforts to aggregate global data have
reduced this barrier (Bruelheide et al. 2018), and continental-
scale assessments are now emerging (Buzzard et al. 2019). For
example, a recent analysis of 201 forest plots in Italy reported
stronger relationships for leaf, plant stature and seed traits than
reported globally, with a set of environmental variables
explaining 16—36% of variance in these traits at community
level (Chelli et al. 2019). Traits are expected to influence spe-
cies ranges across climatic gradients (Stahl et al. 2017), while
soil properties mediate those relationships by altering the costs
of nutrient and water-use (Paillassa et al. 2020).

Here, we examine macroclimatic controls on the func-
tional traits of Australia’s diverse vegetation, linking aggre-
gated community plant traits to environment by combining
species composition, functional trait and environmental
datasets. As part of an emerging global picture, we seek to
present basic patterns of functional traits at continental scale
using the biogeographically distinct plant communities of
Australia. Such analyses represent a major knowledge gap
in Australian vegetation science (Andrew er al. 2021). We
posit that key functional traits of Australian plant communi-
ties are primarily constrained by macroclimate. We used
standardised abundance data collected using precise and
consistent methods to explore these patterns and to deter-
mine whether the abundance-weighted community mean
and variance of key functional traits are related to macroen-
vironmental gradients of temperature, moisture availability
and soil fertility across Australia.

Materials and methods
Datasets

We combined plant species composition data from TERN
Ausplots, which includes standardised abundances across
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environmentally diverse sites (Guerin et al. 2017;
Cleverly et al. 2019; Sparrow et al. 2020), with species-level
data for key functional traits from the AusTraits database,
which aggregates trait measurements for the Australian flora
(Falster et al. 2021). This new dataset enables the first com-
prehensive assessment of trait—environment relationships at
local community level using plot data from across Austral-
ia's major terrestrial biomes by combining robust measures
of relative abundance with high trait coverage.

We calculated species abundances (% cover) from the point-
intercept module of TERN Ausplots (Guerin et al. 2019;
Sparrow et al. 2020; TERN 2020; Munroe et al. 2021). This
nationally distributed network of one hectare plots is a key
component of Australia’s terrestrial ecosystem observatory
(Fig. 1A; Cleverly et al. 2019). All vascular plant species
including trees, where present, and associated understorey, are
recorded where they intersect points at one-metre intervals
along 10 x 100 m transects in each plot, giving accurate meas-
ures of cover over the total of 1010 point-intercept hits
(Sparrow et al. 2020). The plots are stratified to represent the
major environments and vegetation types of the Australian con-
tinent, excluding the wet tropics and ‘tall eucalypt’ forests, and
have high ecological coverage (Guerin et al. 2017;
Guerin et al. 2020a; Guerin et al. 2020c). Key Australian vege-
tation types sampled include eucalypt woodlands, mallee and
forests, Acacia shrublands and woodlands, tussock and hum-
mock (spinifex) grasslands, and chenopod shrublands
(Thackway et al. 2007; Sparrow et al. 2020; Fig. 1B).

We matched species occurrences to log-scaled trait values
for leaf area (mmz), seed mass (mg) and maximum height
(m), from AusTraits (v0.9.1; http://doi.org/10.5281/zen-
0d0.3568417; Appendix S2; Falster et al. 2021;
Guerin et al. 2020b), capturing different aspects of plant
function (Westoby 1998; Garnier & Navas 2012). AusTraits
is a database in which plant traits for the Australian flora
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have been compiled from literature, field and herbarium
sources, comprising > 900,000 trait x species combinations
(Falster et al. 2021).

While our selected focal traits broadly represent the 'leaf-
height-seed' (LHS) scheme (Westoby 1998; Chelli et al. 2019)
of plant function, the original scheme specified specific leaf
area (SLA) rather than the trait leaf area (LA) used in our study.
Like SLA, LA is expected to be highly associated with macro-
climate (Bruelheide et al. 2018), but LA especially influences
leaf energy balance and light interception (Wright et al. 2017).
Leaf size measurements are also available for most Australian
species, whereas dry weight measurements (required to calcu-
late SLA, which is fresh leaf area divided by dry weight) are
not (Andrew et al. 2021).

For species with multiple values in AusTraits, the highest
plant height was taken to represent the trait ‘maximum
height’ (associated with growth form, light competition, and
potential lifespan; Perez-Harguindeguy et al. 2013), while
for other traits the mean was taken. To more effectively use
all available trait data, leaf area and seed mass were, in some
instances, estimated from length and width dimensions
using a Linear Mixed Model (LMM). The leaf area model
used leaf length and width as fixed effects and family taxon
as a random factor with an interaction with leaf length so
random factor levels (families) had independent intercepts
and slopes. Similarly, seed mass was estimated using seed
length as a fixed effect with an interaction with the random
factor of plant taxonomic family. The LMMs were run using
the R package /me4 (Bates et al. 2015) and the predict()
function was used with models to estimate leaf area and
seed mass. Models with family as a random factor explained
the most variation in leaf area and seed mass for the training
data, the leaf area model conditional R? = 0.82 (marginal
R? = 0.74), and for the seed mass model conditional
R? = 0.82 (marginal R? = 0.63). Conditional R? is the

Tussock grasslands

' .
Hummock grasslands Gk
Shrublands

Fig. 1. Maps of Australia showing; A) location of 415 TERN Ausplots for which community trait moments (CWM, CWYV) were analysed,
colour-coded by annual precipitation (PTA); B) broad vegetation types (simplified from Lymburner et al. 2010).
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proportion of variance explained by both fixed and random
factors and marginal R? is for fixed effects only (John-
son 2014).

To circumvent bias in trait data availability, species with
incomplete trait data were gap-filled using Bayesian Hierar-
chical Probabilistic Matrix Factorization (BHPMF;
Schrodt et al. 2015). The machine learning approach of
BHPMF uses the correlation structure in sparse matrices of
trait data along with taxonomic structure to gap fill missing
values. BHPMF was run with a matrix of all traits (i.e., max-
imum plant height, combined leaf area, leaf length, leaf
width, combined seed mass and seed length). All gap-filled
values outside the original range of transformed trait values
were removed. A total of 13, 21 and 29% of species were
gap-filled for maximum height, seed mass and leaf area,
respectively.

We included 2,031 species recorded in 415 sites which
met the criterion of at least 80% trait coverage by abun-
dance, which has been shown to be a suitable standard for
producing unbiased estimates of community traits (Pakeman
& Quested 2007; Borgy et al. 2017; Fig. S1 in Appendix
S1). A comprehensive set of climate, soil and landscape var-
iables were sourced from 9-second resolution (i.e., approxi-
mately 250 m pixels) spatial layers (Grundy et al. 2015;
Harwood et al. 2016; Gallant et al. 2018; Table 1). Selected
variables were log-transformed to linearise relationships.
The selected sites range in mean annual precipitation from
155 to 2,190 mm/yr (Fig. 1A), and span mean annual tem-
perature minima of 2 to 23°C and maxima of 9 to 36°C.

Statistical analysis

We calculated the community weighted mean (CWM;
abundance-weighted mean; Equation 1 of both Bernard-
Verdier et al. 2012; Hulshof et al. 2013) and variance
(CWYV; abundance-weighted sum of squares; Equation 2 of
both Bernard-Verdier et al. 2012; Hulshof et al. 2013) by
trait and site. Trait—environment associations were assessed
using Pearson correlations (Wei & Simko 2021) and regres-
sion against explanatory environmental variables and lati-
tude using Ordinary Least Squares regression (OLS).
Quadratic terms were added where appropriate.

A trait—environment relationship was considered present
if two conditions were met: (i) p < 0.05 after Bonferroni
correction for multiple hypotheses (Rice 1989); and (ii)
regressions of species trait values onto species niche cent-
roids (SNC) along corresponding gradients were significant
(p < 0.05). The latter test is required to avoid common type
I errors in which random traits can yield significant environ-
mental correlations, as well as the potential sensitivity of
CWM to the abundance patterns of one or a few species,
irrespective of functional constraints (ter Braak et al. 2018).
SNCs were calculated for each variable as the abundance-
weighted mean environment where the species occurs. For
each variable—trait combination, SNCs were regressed

Table 1. Climate (Harwood et al. 2016), soil and landform
(Gallant et al. 2018) variables used in the analysis.

Code Name Unit

TXM Maximum temperature — Annual mean °C

TXI Maximum temperature — monthly °C
minimum

TXX Maximum temperature — monthly °C
maximum

TNM Minimum temperature — Annual mean °C

TNI Minimum temperature — monthly °C
minimum

TNX Minimum temperature — monthly °C
maximum

TRI Minimum monthly mean diurnal tem-  °C
perature range

TRX Maximum monthly mean diurnal tem-  °C
perature range

TRA Annual temperature range (TXX — °C
TNI)

ADM Mean annual aridity index (annual pre- proportion
cipitation/ annual potential evaporation)

ADI Minimum monthly aridity index proportion

ADX Maximum monthly aridity index proportion

EPA Annual potential evaporation mm

EPI Minimum monthly potential mm
evaporation

EPX Maximum monthly potential mm
evaporation

EAA Annual total actual evapotranspiration ~ mm
terrain scaled using MODIS

EAAS Annual total actual evapotranspiration ~ mm
modelled using terrain-scaled water
holding capacity

PTA Annual precipitation mm

PTI Minimum monthly precipitation mm

PTX Maximum monthly precipitation mm

PTS1 Precipitation seasonality 1- solstice ratio
seasonality composite factor ratio

PTS2 Precipitation seasonality 2- equinox ratio
seasonality composite factor ratio

WDA Annual atmospheric water deficit mm
(annual precipitation — annual potential
evaporation)

WDI Minimum monthly atmospheric water ~ mm
deficit (precipitation — potential
evaporation)

WDX Maximum monthly atmospheric water ~mm
deficit (precipitation — potential
evaporation)

AWC Available Water Capacity %

BDW Bulk Density — Whole Earth g/em3

CLY Clay %

DER Depth of Regolith m

DES Depth of Soil m

ECE Effective Cation Exchange Capacity meq/100g

NTO Total Nitrogen %

PHC pH — CaCI2 None

PTO Total Phosphorus %

SLT Silt %

(continued)
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Table 1 (Continued)

Code Name Unit
SND Sand %
SOC Organic Carbon %
TWI3S Topographic wetness index index
SLOPEDEG  Slope degrees
PROFCURV Profile curvature index
PLANCURYV Plan curvature index
ELVR1000 Elevation focal range within 1000m index
moving window
CONAREA Contributing area index
SLPFM300 300m focal median of percent slope %

against corresponding species trait values using a linear
model. SNC results were considered only as a vetting proce-
dure for CWM models and hence are not reported in further
detail.

Because OLS residuals were spatially autocorrelated
(Moran's I; Paradis et al. 2004) and were often found to be
heteroskedastic, we repeated regressions using Generalised
Least Squares (GLS; Pinheiro et al. 2016). A Gaussian spa-
tial correlation structure was specified (Dormann et al. 2007;
Pinheiro et al. 2016) and when heteroskedastic residuals
were detected (Breusch & Pagan 1979), models were
encoded with a fixed change in variance along the predictor.
Model fit was compared using pseudo-R? using the method
of Nagelkerke (1991), a modification of the McFadden and
Cox-Snell methods, as implemented in Lefcheck (2015).

A

We report both OLS and GLS models to maximise compara-
bility with similar studies.

To assess variance explained by multiple environmental
variables collectively for all three traits, we performed
redundancy analysis (RDA; Oksanen et al. 2018) on the
response traits constrained by all environmental variables.
We repeated the RDA using a subset of environmental varia-
bles as constraints that had variance inflation factors <10, to
reduce collinearity (Dormann et al. 2013; pairwise variable
correlations shown in Fig. S7). Analyses were performed in
R version 3.3.0 (Appendix S3; R Core Team 2016).

Results

Leaf area CWM was correlated with environmental set-
ting (Figs 2; 3; S3 in Appendix S1), increasing with actual
evapotranspiration (EAA; OLS R?= 0.30; GLS pR2 =0.31),
monthly maximum rainfall (PTX; R? = 0.26; pR2 = 0.32),
monthly minimum temperature (TNI; R?> = 0.15;
pR* = 0.17) and summer rainfall seasonality (PTSI;
R?=0.18; pR* = 0.15). Average leaf area was highest across
northern Australia, in environments that are seasonally wet
in summer, with mild minimum temperatures. While the
relationship with annual precipitation (PTA; R? = 0.22;
pR? = 0.28) was weaker than with actual evapotranspiration,
slope and fit strengthened when outlying sites on the island
of Tasmania, which had high rainfall but small leaf area,
were excluded from the analysis (R* =0.31; pR* =0.38).
Leaf area CWV was related negatively to annual potential
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Fig. 2. Plant community functional trait variation across Australia: Pearson correlations between log-scaled community weighted mean
(CWM) and variance (CWYV) of traits and environmental variables; (A) climate; (B) soil and landscape. Circle size and colour are propor-
tional to the strength and sign of the correlation (value of Pearson’s r; legend) to make patterns visually distinguishable. See Table 1 for vari-

able codes.
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A) Community weighted mean (CWM)
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Fig. 3. Selected community trait—environment regressions. Environmental gradients depicted include those with the highest associations to
individual traits (see Fig. S3 in Appendix S1 for all significant trait—environment combinations): (A) Community weighted mean (CWM) of
leaf area (mm?), seed mass (mg) and maximum height (m) for 415 Ausplots along gradients of actual evapotranspiration (EAA), annual pre-
cipitation (PTA), summer precipitation seasonality (PTS1) and minimum monthly temperature (TNI; Table 1); (B) Community weighted var-
iance (CWV) along gradients of actual evapotranspiration (EAA), annual potential evaporation (EPA), maximum temperature — monthly
maximum (TXX) and maximum monthly mean diurnal temperature range (TRX). All axes are plotted on their original, untransformed scales.
Solid lines are OLS and dashed lines GLS models. Grey models were not statistically significant (OLS) or had non-positive pseudo-R? values
(GLS). Numbers above denote R? (OLS) and pseudo-R2 (GLS), respectively.

evaporation (EPA; R? = 0.17; pR2 = 0.19), maximum
monthly maximum temperature (TXX; R?> = 0.15;
pR? = 0.12) and maximum monthly diurnal temperature
range (TRX; R? = 0.16; pR* = 0.17), all of which are higher
inland. The mean and variance of leaf area exhibited a qua-
dratic association with latitude (Fig. S4 in Appendix S1;
R? = 0.24, 0.19, respectively). For maximum height, CWM

and CWYV were most strongly associated with actual evapo-
transpiration, with taller plants more typical of sites with
higher evapotranspiration (EAA; R? = 0.26; pR* = 0.17 for
CWM; R? = 0.14; pR® = 0.14 for CWV; Figs 2; 3; S3 in
Appendix S1). Maximum height was also correlated with
leaf area (Fig. S6 in Appendix S1), and had quadratic rela-
tionships with latitude (Fig. S4 in Appendix S1; R? = 0.1 for
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Fig. 4. Plant community functional trait variation across Australia:
first two axes of a redundancy analysis with community weighted
means (CWM) of leaf area, seed mass and maximum height con-
strained by environmental variables (Table 1), cumulatively
explaining 33% of variance (27% and 4% for RDA1 & 2, respec-
tively). Selected, scaled vectors are plotted for clarity. See Table 1
for variable codes.

each). The CWM and CWV of seed mass were weakly
related to the environment and latitude, with no predictor
explaining more than 10% of variance (Figs 2; S3; S4 in
Appendix S1). Although trait variance in general reflects
species richness to some degree, removing this effect
through regression residuals did not substantially alter rela-
tionships.

For the RDA constrained ordination based on a non-col-
linear subset of explanatory variables, cumulative variance
explained in the CWM of the three traits was 36% (adjusted-
R? = 0.32; Fig. 4). For CWV, 24% (adjusted-R? = 0.20) of
variance was cumulatively explained (Fig. S2 in Appendix
S1). CWM leaf area and plant height were positively related
to moisture availability along the first axis (see also Fig. S5
in Appendix S1), which explained 28% of variance, and was
defined mostly by actual evapotranspiration and summer
precipitation seasonality. The second axis represented
edaphic variation, defined by soil depth and texture, and was
most correlated with seed mass but explained only 5% of
variance. With all environmental variables included, 43%
(adjusted-R2 = 0.37) of variance in CWMs and 33%
(adjusted-R? = 0.25) of variance in CWV was explained.

Discussion

Australia is a megadiverse, biologically unique and
environmentally varied continent (Crisp and Cook, 2013). A
large body of work continues to grow, describing, classify-
ing and mapping Australian vegetation systems and their
physiognomy, environmental contexts and history

(Barlow 1994). Still, comparatively little quantitative analy-
sis has been done to understand basic functional patterns
and their environmental drivers at continental scale
(Andrew et al. 2021). Data resources emerging over the last
decade, including species occurrence datasets, standardised
plot and trait databases, interpolated environmental layers
and online data portals, have enabled broadscale analysis
(Wright et al  2017; Bruelheide et al. 2018;
Gallagher et al. 2019; Sparrow et al. 2020). For example,
Andrew et al. (2021) showed that plant functional diversity
increases with annual precipitation across Australia when
considering suitable habitat for species aggregated to
10 x 10 km grid cells.

Our results support regional-scale macroclimatic associa-
tions with mean leaf area and maximum height in Australian
plant communities, contrasting with weak global relation-
ships identified by Bruelheide et al. (2018). Our study adds
to a growing body of literature that is identifying the exis-
tence of stronger macroclimatic associations at the regional
level (Buzzard et al. 2019; Chelli et al. 2019) or at the global
level (based on individual species patterns or aggregations
of <1,000 vegetation plots; Wright et al. 2004;
Wright et al. 2005; Moles et al. 2009; Wright et al. 2017;
Zanne et al. 2018).

The relationships between size traits (except seed mass)
and climate reported in our continental analysis are stronger
than from those in the global data. For example, here 24 dif-
ferent trait—climate combinations had R* > 0.1 and all vari-
ables cumulatively explained 43% of variance. By contrast,
in the global analysis of Bruelheide et al. (2018), variables
individually explained no more than 10% of variance in plot
mean trait values, and cumulatively explained just 14%.
While it is possible that macroecological patterns are stron-
ger in Australia than they are globally, methodological dif-
ferences may also have contributed to differences in
relationships compared to the global data. For example, the
Australian plot data we used employed a consistent plot size
and a consistent and precise measure of abundance across
all sites, whereas global analysis pooled a variety of differ-
ent plot sizes and abundance measures, including cover,
basal area, individual counts, importance value and percent-
age frequency in subplots, in order to maximise coverage.
Added to these methodological differences, Australia has a
biogeographically distinct flora that may respond differently
compared to globally aggregated communities, due to a long
evolutionary and environmental history in isolation from
other floras associated with high endemism (Crisp and
Cook, 2013).

At the plant community level, although species with a
wide range of trait values coexist, the weighted-mean
approach shows that traits shift along environmental gra-
dients. Leaf area increased markedly with increasing evapo-
transpiration. That is, mean log-scaled leaf area increased by
approximately 50% (~12-fold on original scale) over the
sampled range of actual evapotranspiration. This pattern of
larger leaves in warm, seasonally wet environments
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confirms expectations from species-level studies for aggre-
gated plant communities (Garnier & Navas 2012;
Wright et al. 2017; Richards et al. 2021). The curvilinear
relationship with latitude corresponds to larger leaves being
present in plant communities at the mesic coastal fringes of
Australia relative to the arid interior, consistent with patterns
identified at the species level (Guerin & Lowe 2013). How-
ever, vegetation in mesic environments subject to subzero
winter temperatures had smaller leaves (Wright et al. 2017),
and this weakened the relationship with rainfall.

Competition for light is predicted to favour tall species in
mesic environments (Falster &  Westoby 2003;
Falster et al. 2017). However, limitations of water availabil-
ity and the potential for cavitation and hydraulic failure
shorten plant stature in arid and semi-arid environments
(Koch et al. 2004). Physiological limits on plant height are
reflected in the decrease in mean and variance of maximum
height with decreasing evapotranspiration shown here. Even
so0, the data suggest variation in the average height of vegeta-
tion remains regardless of gradients in macroclimatic condi-
tions, which is likely related to competitive setting and time
since disturbance.

We found no evidence that macro-scale soil differences
drive variation at the community level in the three traits ana-
lysed. The few associations between soil conditions and
traits detected were weak and confounded by rainfall, which
correlates positively with soil carbon and nitrogen, and neg-
atively with pH. Weak associations with soil are surprising,
given evidence for the role of soil nutrition in shaping adap-
tations such as scleromorphy in Australian vegetation (Hop-
per 1979; Hill 1998), and driving variation in leaf width,
SLA and plant height in eastern  Australia
(Fonseca et al. 2000). This aspect warrants further investiga-
tion as to whether micro-scale soil conditions and alternative
traits such as leaf life span or SLA, which is typically lower
in hot, dry environments (Wright & Westoby 2003;
Wright et al. 2004; Wright et al. 2005; Kattge et al. 2020)
are more strongly associated than patterns detected here.
Additionally, edaphic data were sourced from continental
layers intended for broadscale comparisons. Local differen-
ces in soil are likely to influence observed species composi-
tion and therefore trait moments (Ewald 2000).

Previous models predict higher mean seed mass with
increasing resource availability, due to a trade-off between
relative  growth rate and competition for light
(DeMalach et al. 2019). Empirical data suggest seed mass
has associations with rainfall, latitude and productivity at
species, community or aggregated grid cell levels
(Moles and Westoby 2003; Sandel et al. 2010;
DeMalach et al. 2019). Reported patterns have been some-
what contradictory, however, with cases of positive, nega-
tive or neutral associations between soil fertility and seed
size (Westoby et al. 2002). In agreement with
Bruelheide et al. (2018), we found no evidence of macrocli-
matic controls on mean seed mass. No environmental vari-
able explained more than 5% of variance, as compared to

Chelli et al. (2019), who reported that 16% of variance in
CWM of seed mass in Italian forests was explained by a vet-
ted set of environmental variables, albeit using the non-lin-
ear GAM regression method, which may not be completely
comparable to linear methods. This result deserves further
investigation, for example as to whether the inclusion of
habitats in Australia’s wet tropics bioregion would change
observed patterns. Tropical rainforests are typically charac-
terised by large-seeded species (Foster 1986; Grubb &
Coomes 1997; Moles & Westoby 2003; Moles et al. 2005b)
and, while making up a small land area in Australia, are not
represented in the plot dataset (Guerin et al. 2020a). Close
associations between large seeds and vertebrate dispersers
which occur in rainforests may also limit the occurrence of
many large-seeded plant species outside Australian tropical
rainforests (Westcott et al. 2005). Alternatively, phyloge-
netic conservatism in seed size (Lord et al. 1995) and the
coexistence of species with very different seed sizes may
explain the lack of strong signals along environmental gra-
dients (Westoby et al. 2002).

The increasing community variance in leaf area and maxi-
mum plant height along gradients of moisture availability
suggest convergence of community traits with increasing
aridity consistent with trait-based environmental filtering of
communities under harsher environmental conditions (Ber-
nard-Verdier et al. 2012; Andrew et al. 2021). Even so, envi-
ronmental variation was a poorer predictor of the variance
than the mean, reflecting the fact that species with different
functional trait values can coexist in a range of environ-
ments, despite filtering and a  shifting mean
(Bruelheide et al. 2018).

The scaling of functional community responses to climate
from locally co-occurring species in plots (including measures
of relative abundance) to communities across larger regions is a
remaining knowledge gap, as are the roles of local factors (e.g.,
disturbance and microclimate) and intraspecific trait variation in
determining trait moments (i.e., their unexplained variation) and
other properties of vegetation communities. Meanwhile, ques-
tions remain concerning the role of environmental gradients in
driving aggregated community traits at different scales. In future
studies, globally aggregating regional calculations of functional
responses to macroclimate could be one way to test and account
for different responses among biogeographical regions com-
pared to global patterns. Given that leaf size and plant height
have been shown to influence differences in ecosystem func-
tion, notably carbon assimilation and storage, across species
and vegetation types (Luo et al. 2019; Moles et al. 2009;
Li et al. 2020), the macroecological patterns of variation devel-
oped here can potentially be integrated into Dynamic Global
Vegetation Models for Australia.

Conclusion

The trait patterns of plant communities along macrocli-
matic gradients reported here contribute to a much needed
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quantitative baseline understanding of the basic functional
properties of the Australian vegetation at continental scale.
Moisture availability, as indicated by actual evapotranspira-
tion, was found to be an important driver of community
level leaf size and plant height in Australia when consider-
ing the relative abundance of species in plot-based samples.
This confirms expectations from species-level and regional
studies but contrasts with weaker global trait—macro-envi-
ronment relationships. The results suggest key aspects of
vegetation form and function, related to structure, light inter-
ception and carbon assimilation, can be predicted from mac-
roclimate, potentially informing regional models of
vegetation dynamics. Further analysis is needed to interpret
the scaling of responses from local to regional samples and
to better account for the influence of local factors such as
disturbance and microclimate on trait moments, as well as
the role of intraspecific trait variance in mediating responses
to environmental change.
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