623 research outputs found
Transcriptomic Analysis of Laribacter hongkongensis Reveals Adaptive Response Coupled with Temperature
published_or_final_versio
Production and optimization of alkalostable lipase by alkalophilic Burkholderia cenocepacia ST8
A superior lipase-producing bacterium was isolated from forest soil samples in Setapak, Malaysia and it was identified as Burkholderia cenocepacia with 16S rRNA sequencing technique. Multifactor experimental design based on ‘change-one-factor-at-a-time’ approach was employed to optimize the production of Bukholderia lipase with submerged fermentation technique. Effects of carbon and nitrogen sources, metal ions as well as initial pH of medium on lipase production were extensively investigated. Optimal lipase activity was achieved in medium using combination of sunflower oil and Tween 80 (1% v/v each) as carbon sources. Simple sugars such as glucose and fructose, however, did not promote the production of lipase. Peptone (from meat) at 0.33% (w/v) was the most suitable nitrogen source for lipase production by this Gram-negative bacterium. The presence of Ca2+ in the cultivation medium possessed significant effect on lipase production while Mg2+, Mn2+, Na+, Fe2+, Cu2+ and Co2+ exhibited inhibitory effect towards the enzyme production. Initial culture pH in the range of 5 to 11 were found suitable for lipase production, with the maximum level of lipase activity recorded in the medium with initial culture pH of 9.0.Key words: Alkalostable lipase, alkalophilic Burkholderia cenocepacia, optimization, multifactor experimental design
Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage.
Colibactin is an assumed human gut bacterial genotoxin, whose biosynthesis is linked to the clb genomic island that has a widespread distribution in pathogenic and commensal human enterobacteria. Colibactin-producing gut microbes promote colon tumour formation and enhance the progression of colorectal cancer via cellular senescence and death induced by DNA double-strand breaks (DSBs); however, the chemical basis that contributes to the pathogenesis at the molecular level has not been fully characterized. Here, we report the discovery of colibactin-645, a macrocyclic colibactin metabolite that recapitulates the previously assumed genotoxicity and cytotoxicity. Colibactin-645 shows strong DNA DSB activity in vitro and in human cell cultures via a unique copper-mediated oxidative mechanism. We also delineate a complete biosynthetic model for colibactin-645, which highlights a unique fate of the aminomalonate-building monomer in forming the C-terminal 5-hydroxy-4-oxazolecarboxylic acid moiety through the activities of both the polyketide synthase ClbO and the amidase ClbL. This work thus provides a molecular basis for colibactin's DNA DSB activity and facilitates further mechanistic study of colibactin-related colorectal cancer incidence and prevention
Recommended from our members
The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism
Increased intake of dietary carbohydrate that is fermented in the colon by the microbiota has been reported to decrease body weight, although the mechanism remains unclear. Here we use in vivo11C-acetate and PET-CT scanning to show that colonic acetate crosses the blood–brain barrier and is taken up by the brain. Intraperitoneal acetate results in appetite suppression and hypothalamic neuronal activation patterning. We also show that acetate administration is associated with activation of acetyl-CoA carboxylase and changes in the expression profiles of regulatory neuropeptides that favour appetite suppression. Furthermore, we demonstrate through 13C high-resolution magic-angle-spinning that 13C acetate from fermentation of 13C-labelled carbohydrate in the colon increases hypothalamic 13C acetate above baseline levels. Hypothalamic 13C acetate regionally increases the 13C labelling of the glutamate–glutamine and GABA neuroglial cycles, with hypothalamic 13C lactate reaching higher levels than the ‘remaining brain’. These observations suggest that acetate has a direct role in central appetite regulation
The Associations of Income, Education and Income Inequality and Subjective Well-Being among Elderly in Hong Kong-A Multilevel Analysis
Background: Higher income and education and lower income inequality in a neighbourhood have been shown to be related to better mental health outcome in developed countries. However, it is not clear whether these factors would affect the subjective well-being of the elderly, especially in a setting with recent rapid economic development. Methods: This study was conducted in 80 community centres with a total of 7552 community-dwelling elderly (mean age 75.9 years (SD = 7.79), 79% female) in Hong Kong. Income at individual level was measured as perceived disposable income. Education level was also collected. At district level, income was measured by district median household income and education was measured as the proportion of the population with no formal schooling. Income inequality was quantified using Gini coefficients. Low subjective well-being was defined as any one or a combination of the following: not satisfied with life, no meaning of life and being unhappy (Likert scale ≤ 2). Multilevel logistic regression was used to assess the association of income, education and income inequality and low subjective well-being. Results: We found that 15.3% (95% confidence interval (CI): 14.5 to 16.1) of the elderly have low subjective well-being. Compared with elderly who reported a very adequate disposable income, those who reported a very inadequate disposable income are at increased risk of low subjective well-being (OR=5.08, 95%CI: 2.44 to 10.59). Compared with elderly with tertiary education, those with no formal schooling were at higher risk (OR=1.60, 95%CI 1.22 to 2.09). Income inequality was not related to subjective well-being. Conclusions: Elderly with inadequate disposable income and lower education level are more likely to suffer from low subjective well-being. At the neighbourhood level, income inequality was not related to subjective well-being. However, the relationships between neighbourhood income and education level and individuals’ subjective well-being are not clear
Neurophysiological evidence for rapid processing of verbal and gestural information in understanding communicative actions
During everyday social interaction, gestures are a fundamental part of human communication. The communicative pragmatic role of hand gestures and their interaction with spoken language has been documented at the earliest stage of language development, in which two types of indexical gestures are most prominent: the pointing gesture for directing attention to objects and the give-me gesture for making requests. Here we study, in adult human participants, the neurophysiological signatures of gestural-linguistic acts of communicating the pragmatic intentions of naming and requesting by simultaneously presenting written words and gestures. Already at ~150 ms, brain responses diverged between naming and request actions expressed by word-gesture combination, whereas the same gestures presented in isolation elicited their earliest neurophysiological dissociations significantly later (at ~210 ms). There was an early enhancement of request-evoked brain activity as compared with naming, which was due to sources in the frontocentral cortex, consistent with access to action knowledge in request understanding. In addition, an enhanced N400-like response indicated late semantic integration of gesture-language interaction. The present study demonstrates that word-gesture combinations used to express communicative pragmatic intentions speed up the brain correlates of comprehension processes – compared with gesture-only understanding – thereby calling into question current serial linguistic models viewing pragmatic function decoding at the end of a language comprehension cascade. Instead, information about the social-interactive role of communicative acts is processed instantaneously
Panel 4 : Report of the Microbiology Panel
Objective. To perform a comprehensive review of the literature from July 2011 until June 2015 on the virology and bacteriology of otitis media in children. Data Sources. PubMed database of the National Library of Medicine. Review Methods. Two subpanels comprising experts in the virology and bacteriology of otitis media were created. Each panel reviewed the relevant literature in the fields of virology and bacteriology and generated draft reviews. These initial reviews were distributed to all panel members prior to meeting together at the Post-symposium Research Conference of the 18th International Symposium on Recent Advances in Otitis Media, National Harbor, Maryland, in June 2015. A final draft was created, circulated, and approved by all panel members. Conclusions. Excellent progress has been made in the past 4 years in advancing our understanding of the microbiology of otitis media. Numerous advances were made in basic laboratory studies, in animal models of otitis media, in better understanding the epidemiology of disease, and in clinical practice. Implications for Practice. (1) Many viruses cause acute otitis media without bacterial coinfection, and such cases do not require antibiotic treatment. (2) When respiratory syncytial virus, metapneumovirus, and influenza virus peak in the community, practitioners can expect to see an increase in clinical otitis media cases. (3) Biomarkers that predict which children with upper respiratory tract infections will develop otitis media may be available in the future. (4) Compounds that target newly identified bacterial virulence determinants may be available as future treatment options for children with otitis media.Peer reviewe
Human H7N9 virus induces a more pronounced pro-inflammatory cytokine but an attenuated interferon response in human bronchial epithelial cells when compared with an epidemiologically-linked chicken H7N9 virus
The Viscoelastic Properties of Passive Eye Muscle in Primates. II: Testing the Quasi-Linear Theory
We have extensively investigated the mechanical properties of passive eye muscles, in vivo, in anesthetized and paralyzed monkeys. The complexity inherent in rheological measurements makes it desirable to present the results in terms of a mathematical model. Because Fung's quasi-linear viscoelastic (QLV) model has been particularly successful in capturing the viscoelastic properties of passive biological tissues, here we analyze this dataset within the framework of Fung's theory
Inhibition of the aquaporin 3 water channel increases the sensitivity of prostate cancer cells to cryotherapy
Aquaporins (AQPs) are intrinsic membrane proteins that facilitate selective water and small solute movement across the plasma membrane. In this study, we investigate the role of inhibiting AQPs in sensitising prostate cancer cells to cryotherapy. PC-3 and DU145 prostate cancer cells were cooled to 0, −5 and −10°C. The expression of AQP3 in response to freezing was determined using real-time quantitative polymerase chain reaction (RT–qPCR) and western blot analysis. Aquaporins were inhibited using mercuric chloride (HgCl2) and small interfering RNA (siRNA) duplex, and cell survival was assessed using a colorimetric assay. There was a significant increase in AQP3 expression in response to freezing. Cells treated with AQP3 siRNA were more sensitive to cryoinjury compared with control cells (P<0.001). Inhibition of the AQPs by HgCl2 also increased the sensitivity of both cell lines to cryoinjury and there was a complete loss of cell viability at −10°C (P<0.01). In conclusion, we have shown that AQP3 is involved directly in cryoinjury. Inhibition of AQP3 increases the sensitivity of prostate cancer cells to freezing. This strategy may be exploited in the clinic to improve the efficacy of prostate cryotherapy
- …
