433 research outputs found

    Validity and responsiveness to change of the Active Australia Survey according to gender, age, BMI, education, and physical activity level and awareness

    Get PDF
    © 2019 The Author(s). Background: This study aimed to investigate the validity of the Active Australia Survey across different subgroups and its responsiveness to change, as few previous studies have examined this. Methods: The Active Australia Survey was validated against the ActiGraph as an objective measure of physical activity. Participants (n = 465) wore the ActiGraph for 7 days and subsequently completed the Active Australia Survey. Moderate activity, vigorous activity and total moderate and vigorous physical activity were compared using Spearman rank-order correlations. Changes in physical activity between baseline and 3-month assessments were correlated to examine responsiveness to change. The data were stratified to assess outcomes according to different subgroups (e.g., gender, age, weight, activity levels). Results: With regards to the validity, a significant correlation of ρ = 0.19 was found for moderate physical activity, ρ = 0.33 for vigorous physical activity and ρ = 0.23 for moderate and vigorous physical activity combined. For vigorous physical activity correlations were higher than 0.3 for most subgroups, whereas they were only higher than 0.3 in those with a healthy weight for the other activity outcomes. With regards to responsiveness to change, a correlation of ρ = 0.32 was found for moderate physical activity, ρ = 0.19 for vigorous physical activity and ρ = 0.35 for moderate and vigorous physical activity combined. For moderate and vigorous activity combined correlations were higher than 0.4 for several subgroups, but never for vigorous physical activity. Conclusions: Little evidence for the validity of Active Australia Survey was found, although the responsiveness to change was acceptable for several subgroups. Findings from studies using the Active Australia Survey should be interpreted with caution. Trial registration: World Health Organisation Universal Trial Number: U111-1119-1755. Australian New Zealand Clinical Trials Registry, ACTRN12611000157976. Registration date: 8 March 2011

    Dynamic Environmental Photosynthetic Imaging Reveals Emergent Phenotypes.

    Full text link
    Understanding and improving the productivity and robustness of plant photosynthesis requires high-throughput phenotyping under environmental conditions that are relevant to the field. Here we demonstrate the dynamic environmental photosynthesis imager (DEPI), an experimental platform for integrated, continuous, and high-throughput measurements of photosynthetic parameters during plant growth under reproducible yet dynamic environmental conditions. Using parallel imagers obviates the need to move plants or sensors, reducing artifacts and allowing simultaneous measurement on large numbers of plants. As a result, DEPI can reveal phenotypes that are not evident under standard laboratory conditions but emerge under progressively more dynamic illumination. We show examples in mutants of Arabidopsis of such "emergent phenotypes" that are highly transient and heterogeneous, appearing in different leaves under different conditions and depending in complex ways on both environmental conditions and plant developmental age. These emergent phenotypes appear to be caused by a range of phenomena, suggesting that such previously unseen processes are critical for plant responses to dynamic environments

    Recruitment, screening, and baseline participant characteristics in the WALK 2.0 study: A randomized controlled trial using web 2.0 applications to promote physical activity.

    Full text link
    OBJECTIVE: To describe in detail the recruitment methods and enrollment rates, the screening methods, and the baseline characteristics of a sample of adults participating in the Walk 2.0 Study, an 18 month, 3-arm randomized controlled trial of a Web 2.0 based physical activity intervention. METHODS: A two-fold recruitment plan was developed and implemented, including a direct mail-out to an extract from the Australian Electoral Commission electoral roll, and other supplementary methods including email and telephone. Physical activity screening involved two steps: a validated single-item self-report instrument and the follow-up Active Australia Questionnaire. Readiness for physical activity participation was also based on a two-step process of administering the Physical Activity Readiness Questionnaire and, where needed, further clearance from a medical practitioner. RESULTS: Across all recruitment methods, a total of 1244 participants expressed interest in participating, of which 656 were deemed eligible. Of these, 504 were later enrolled in the Walk 2.0 trial (77% enrollment rate) and randomized to the Walk 1.0 group (n = 165), the Walk 2.0 group (n = 168), or the Logbook group (n = 171). Mean age of the total sample was 50.8 years, with 65.2% female and 79.1% born in Australia. CONCLUSION: The results of this recruitment process demonstrate the successful use of multiple strategies to obtain a diverse sample of adults eligible to take part in a web-based physical activity promotion intervention. The use of dual screening processes ensured safe participation in the intervention. This approach to recruitment and physical activity screening can be used as a model for further trials in this area

    Using Web 2.0 applications to promote health-related physical activity: findings from the WALK 2.0 randomised controlled trial.

    Full text link
    BACKGROUND/AIM: Web 2.0 internet technology has great potential in promoting physical activity. This trial investigated the effectiveness of a Web 2.0-based intervention on physical activity behaviour, and the impact on website usage and engagement. METHODS: 504 (328 women, 126 men) insufficiently active adult participants were randomly allocated to one of two web-based interventions or a paper-based Logbook group. The Web 1.0 group participated in the existing 10 000 Steps programme, while the Web 2.0 group participated in a Web 2.0-enabled physical activity intervention including user-to-user interaction through social networking capabilities. ActiGraph GT3X activity monitors were used to assess physical activity at four points across the intervention (0, 3, 12 and 18 months), and usage and engagement were assessed continuously through website usage statistics. RESULTS: Treatment groups differed significantly in trajectories of minutes/day of physical activity (p=0.0198), through a greater change at 3 months for Web 2.0 than Web 1.0 (7.3 min/day, 95% CI 2.4 to 12.3). In the Web 2.0 group, physical activity increased at 3 (mean change 6.8 min/day, 95% CI 3.9 to 9.6) and 12 months (3.8 min/day, 95% CI 0.5 to 7.0), but not 18 months. The Logbook group also increased physical activity at 3 (4.8 min/day, 95% CI 1.8 to 7.7) and 12 months (4.9 min/day, 95% CI 0.7 to 9.1), but not 18 months. The Web 1.0 group increased physical activity at 12 months only (4.9 min/day, 95% CI 0.5 to 9.3). The Web 2.0 group demonstrated higher levels of website engagement (p=0.3964). CONCLUSIONS: In comparison to a Web 1.0 intervention, a more interactive Web 2.0 intervention, as well as the paper-based Logbook intervention, improved physical activity in the short term, but that effect reduced over time, despite higher levels of engagement of the Web 2.0 group. TRIAL REGISTRATION NUMBER: ACTRN12611000157976

    Associations between quality of life and duration and frequency of physical activity and sedentary behaviour: Baseline findings from the WALK 2.0 randomised controlled trial.

    Full text link
    While physical and mental health benefits of regular physical activity are well known, increasing evidence suggests that limiting sedentary behaviour is also important for health. Evidence shows associations of physical activity and sedentary behaviour with health-related quality of life (HRQoL), however, these findings are based predominantly on duration measures of physical activity and sedentary behaviour (e.g., minutes/week), with less attention on frequency measures (e.g., number of bouts). We examined the association of HRQoL with physical activity and sedentary behaviour, using both continuous duration (average daily minutes) and frequency (average daily bouts≥10 min) measures. Baseline data from the WALK 2.0 trial were analysed. WALK 2.0 is a randomised controlled trial investigating the effects of Web 2.0 applications on engagement, retention, and subsequent physical activity change. Daily physical activity and sedentary behaviour (duration = average minutes, frequency = average number of bouts ≥10 minutes) were measured (ActiGraph GT3X) across one week, and HRQoL was assessed with the 'general health' subscale of the RAND 36-Item Health Survey. Structural equation modelling was used to evaluate associations. Participants (N = 504) were 50.8±13.1 (mean±SD) years old with a BMI of 29.3±6.0. The 465 participants with valid accelerometer data engaged in an average of 24.0±18.3 minutes and 0.64±0.74 bouts of moderate-vigorous physical activity per day, 535.2±83.8 minutes and 17.0±3.4 bouts of sedentary behaviour per day, and reported moderate-high general HRQoL (64.5±20.0). After adjusting for covariates, the duration measures of physical activity (path correlation = 0.294, p<0.05) and sedentary behaviour were related to general HRQoL (path coefficient = -0.217, p<0.05). The frequency measure of physical activity was also significant (path coefficient = -0.226, p<0.05) but the frequency of sedentary behaviour was not significantly associated with general HRQoL. Higher duration levels of physical activity in fewer bouts, and lower duration of sedentary behaviour are associated with better general HRQoL. Further prospective studies are required to investigate these associations in different population groups over time

    Temperature, Viral Genetics, and the Transmission of West Nile Virus by Culex pipiens Mosquitoes

    Get PDF
    The distribution and intensity of transmission of vector-borne pathogens can be strongly influenced by the competence of vectors. Vector competence, in turn, can be influenced by temperature and viral genetics. West Nile virus (WNV) was introduced into the United States of America in 1999 and subsequently spread throughout much of the Americas. Previously, we have shown that a novel genotype of WNV, WN02, first detected in 2001, spread across the US and was more efficient than the introduced genotype, NY99, at infecting, disseminating, and being transmitted by Culex mosquitoes. In the current study, we determined the relationship between temperature and time since feeding on the probability of transmitting each genotype of WNV. We found that the advantage of the WN02 genotype increases with the product of time and temperature. Thus, warmer temperatures would have facilitated the invasion of the WN02 genotype. In addition, we found that transmission of WNV accelerated sharply with increasing temperature, T, (best fit by a function of T4) showing that traditional degree-day models underestimate the impact of temperature on WNV transmission. This laboratory study suggests that both viral evolution and temperature help shape the distribution and intensity of transmission of WNV, and provides a model for predicting the impact of temperature and global warming on WNV transmission

    Observation of the Baryonic Flavor-Changing Neutral Current Decay Lambda_b -> Lambda mu+ mu-

    Get PDF
    We report the first observation of the baryonic flavor-changing neutral current decay Lambda_b -> Lambda mu+ mu- with 24 signal events and a statistical significance of 5.8 Gaussian standard deviations. This measurement uses ppbar collisions data sample corresponding to 6.8fb-1 at sqrt{s}=1.96TeV collected by the CDF II detector at the Tevatron collider. The total and differential branching ratios for Lambda_b -> Lambda mu+ mu- are measured. We find B(Lambda_b -> Lambda mu+ mu-) = [1.73+-0.42(stat)+-0.55(syst)] x 10^{-6}. We also report the first measurement of the differential branching ratio of B_s -> phi mu+ mu- using 49 signal events. In addition, we report branching ratios for B+ -> K+ mu+ mu-, B0 -> K0 mu+ mu-, and B -> K*(892) mu+ mu- decays.Comment: 8 pages, 2 figures, 4 tables. Submitted to Phys. Rev. Let

    Interventions for renal vasculitis in adults. A systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Renal vasculitis presents as rapidly progressive glomerulonephritis and comprises of a group of conditions characterised by acute kidney failure, haematuria and proteinuria. Treatment of these conditions involves the use of steroid and non-steroid agents with or without adjunctive plasma exchange. Although immunosuppression has been successful, many questions remain unanswered in terms of dose and duration of therapy, the use of plasma exchange and the role of new therapies. This systematic review was conducted to determine the benefits and harms of any intervention for the treatment of renal vasculitis in adults.</p> <p>Methods</p> <p>We searched the Cochrane Central Register of Controlled Trials, the Cochrane Renal Group Specialised Register, MEDLINE and EMBASE to June 2009. Randomised controlled trials investigating any intervention for the treatment of adults were included. Two authors independently assessed study quality and extracted data. Statistical analyses were performed using a random effects model and results expressed as risk ratio with 95% confidence intervals for dichotomous outcomes or mean difference for continuous outcomes.</p> <p>Results</p> <p>Twenty two studies (1674 patients) were included. Plasma exchange as adjunctive therapy significantly reduces the risk of end-stage kidney disease at 12 months (five studies: RR 0.47, CI 0.30 to 0.75). Four studies compared the use of pulse and continuous administration of cyclophosphamide. Remission rates were equivalent but pulse treatment causes an increased risk of relapse (4 studies: RR 1.79, CI 1.11 to 2.87) compared with continuous cyclophosphamide. Azathioprine has equivalent efficacy as a maintenance agent to cyclophosphamide with fewer episodes of leukopenia. Mycophenolate mofetil may be equivalent to cyclophosphamide as an induction agent but resulted in a higher relapse rate when tested against Azathioprine in remission maintenance. Rituximab is an effective remission induction agent. Methotrexate or Leflunomide are potential choices in remission maintenance therapy. Oral co-trimoxazole did not reduce relapses significantly in Wegener's granulomatosis.</p> <p>Conclusions</p> <p>Plasma exchange is effective in patients with severe ARF secondary to vasculitis. Pulse cyclophosphamide results in an increased risk of relapse when compared to continuous oral use but a reduced total dose. Whilst cyclophosphamide is standard induction treatment, rituximab and mycophenolate mofetil are also effective. Azathioprine, methotrexate and leflunomide are effective as maintenance therapy. Further studies are required to more clearly delineate the appropriate place of newer agents within an evidence-based therapeutic strategy.</p

    Bayesian calibration, validation and uncertainty quantification for predictive modelling of tumour growth: a tutorial

    Get PDF
    In this work we present a pedagogical tumour growth example, in which we apply calibration and validation techniques to an uncertain, Gompertzian model of tumour spheroid growth. The key contribution of this article is the discussion and application of these methods (that are not commonly employed in the field of cancer modelling) in the context of a simple model, whose deterministic analogue is widely known within the community. In the course of the example we calibrate the model against experimental data that is subject to measurement errors, and then validate the resulting uncertain model predictions. We then analyse the sensitivity of the model predictions to the underlying measurement model. Finally, we propose an elementary learning approach for tuning a threshold parameter in the validation procedure in order to maximize predictive accuracy of our validated model
    corecore