462 research outputs found

    Numerical simulation of spray coalescence in an eulerian framework : direct quadrature method of moments and multi-fluid method

    Full text link
    The scope of the present study is Eulerian modeling and simulation of polydisperse liquid sprays undergoing droplet coalescence and evaporation. The fundamental mathematical description is the Williams spray equation governing the joint number density function f(v, u; x, t) of droplet volume and velocity. Eulerian multi-fluid models have already been rigorously derived from this equation in Laurent et al. (2004). The first key feature of the paper is the application of direct quadrature method of moments (DQMOM) introduced by Marchisio and Fox (2005) to the Williams spray equation. Both the multi-fluid method and DQMOM yield systems of Eulerian conservation equations with complicated interaction terms representing coalescence. In order to validate and compare these approaches, the chosen configuration is a self-similar 2D axisymmetrical decelerating nozzle with sprays having various size distributions, ranging from smooth ones up to Dirac delta functions. The second key feature of the paper is a thorough comparison of the two approaches for various test-cases to a reference solution obtained through a classical stochastic Lagrangian solver. Both Eulerian models prove to describe adequately spray coalescence and yield a very interesting alternative to the Lagrangian solver

    Uptake of gases in bundles of carbon nanotubes

    Full text link
    Model calculations are presented which predict whether or not an arbitrary gas experiences significant absorption within carbon nanotubes and/or bundles of nanotubes. The potentials used in these calculations assume a conventional form, based on a sum of two-body interactions with individual carbon atoms; the latter employ energy and distance parameters which are derived from empirical combining rules. The results confirm intuitive expectation that small atoms and molecules are absorbed within both the interstitial channels and the tubes, while large atoms and molecules are absorbed almost exclusively within the tubes.Comment: 9 pages, 12 figures, submitted to PRB Newer version (8MAR2K). There was an error in the old one (23JAN2K). Please download thi

    Structure and Dynamics of Liquid Iron under Earth's Core Conditions

    Full text link
    First-principles molecular dynamics simulations based on density-functional theory and the projector augmented wave (PAW) technique have been used to study the structural and dynamical properties of liquid iron under Earth's core conditions. As evidence for the accuracy of the techniques, we present PAW results for a range of solid-state properties of low- and high-pressure iron, and compare them with experimental values and the results of other first-principles calculations. In the liquid-state simulations, we address particular effort to the study of finite-size effects, Brillouin-zone sampling and other sources of technical error. Results for the radial distribution function, the diffusion coefficient and the shear viscosity are presented for a wide range of thermodynamic states relevant to the Earth's core. Throughout this range, liquid iron is a close-packed simple liquid with a diffusion coefficient and viscosity similar to those of typical simple liquids under ambient conditions.Comment: 13 pages, 8 figure

    Model study on the photoassociation of a pair of trapped atoms into an ultralong-range molecule

    Full text link
    Using the method of quantum-defect theory, we calculate the ultralong-range molecular vibrational states near the dissociation threshold of a diatomic molecular potential which asymptotically varies as 1/R3-1/R^3. The properties of these states are of considerable interest as they can be formed by photoassociation (PA) of two ground state atoms. The Franck-Condon overlap integrals between the harmonically trapped atom-pair states and the ultralong-range molecular vibrational states are estimated and compared with their values for a pair of untrapped free atoms in the low-energy scattering state. We find that the binding between a pair of ground-state atoms by a harmonic trap has significant effect on the Franck-Condon integrals and thus can be used to influence PA. Trap-induced binding between two ground-state atoms may facilitate coherent PA dynamics between the two atoms and the photoassociated diatomic molecule.Comment: 11 pages, 4 figures, to appear in Phys. Rev. A (September, 2003

    P-wave excited baryons from pion- and photo-induced hyperon production

    Full text link
    We report evidence for N(1710)P11N(1710)P_{11}, N(1875)P11N(1875)P_{11}, N(1900)P13N(1900)P_{13}, Δ(1600)P33\Delta(1600)P_{33}, Δ(1910)P31\Delta(1910)P_{31}, and Δ(1920)P33\Delta(1920)P_{33}, and find indications that N(1900)P13N(1900)P_{13} might have a companion state at 1970\,MeV. The controversial Δ(1750)P31\Delta(1750)P_{31} is not seen. The evidence is derived from a study of data on pion- and photo-induced hyperon production, but other data are included as well. Most of the resonances reported here were found in the Karlsruhe-Helsinki (KH84) and the Carnegie-Mellon (CM) analyses but were challenged recently by the Data Analysis Center at GWU. Our analysis is constrained by the energy independent πN\pi N scattering amplitudes from either KH84 or GWU. The two πN\pi N amplitudes from KH84 or GWU, respectively, lead to slightly different πN\pi N branching ratios of contributing resonances but the debated resonances are required in both series of fits.Comment: 22 pages, 28 figures. Some additional sets of data are adde

    Photoproduction of pions and properties of baryon resonances from a Bonn-Gatchina partial wave analysis

    Full text link
    Masses, widths and photocouplings of baryon resonances are determined in a coupled-channel partial wave analysis of a large variety of data. The Bonn-Gatchina partial wave formalism is extended to include a decomposition of t- and u-exchange amplitudes into individual partial waves. The multipole transition amplitudes for γppπ0\gamma p\to p\pi^0 and γpnπ+\gamma p\to n\pi^+ are given and compared to results from other analyses.Comment: 18 pages, 14 figure

    Formulation and evaluation of CFC free inhalers for beclomethasone dipropionate

    Get PDF
    Beclomethasone dipropionate CFC free inhalation formulations were developed with a view to treat asthma prophylactically. Dry powder inhalers (DPI) for beclomethasone dipropionate were prepared with different grades of lactose monohydrate. The influence of carrier and overages on performance of DPI was studied. Metered dose inhalers (MDI) with HFA based propellants were formulated with various doses, overages and different concentrations of alcohol. Formulated DPI and MDI were evaluated for various official and unofficial quality control tests. The influence of over doses on valve delivery, effect of overages on emitted dose and influence of alcohol on spray pattern from MDI were studied. The better fine particle fraction and emitted dose were obtained from the DPI formulated with 10:90 ratio of fine lactose: coarse lactose and with 20% w/w overages. The studies on MDI revealed that the 15% of overdoses are required for effective valve delivery and 20% overages are required for 100% drug delivery. 5-10%v/v alcohol was found to be preferable to get optimum emitted dose and fine particle fraction

    Examining Contextual Factors and Individual Value Dimensions of Healthcare Providers Intention to Adopt Electronic Health Technologies in Developing Countries

    Get PDF
    Part 5: Research in ProgressInternational audienceDespite substantial research on electronic health (e-Health) adoption, there still exist vast differences between resource-rich and resource-poor populations regarding Information Technology adoption. To help bridge the technological gulf between developed and developing countries, this research-in-progress paper examines healthcare providers’ intention to adopt e-health technologies from two perspectives 1) contextual factors (i.e. specific to developing world settings) and 2) individual value dimensions (i.e. cultural, utilitarian, social and personal). The primary output of this paper is a theoretical model merging both the contextual factors and value dimensions; this forms a strong baseline to examine and help ensure the successful adoption of e-Health technologies within developing countries. Future research will be performed to validate the model developed in this paper, with a specific focus on mobile Health in Malawi, Africa

    Supporting the Construction of Workflows for Biodiversity Problem-Solving Accessing Secure, Distributed Resources

    Get PDF
    In the Biodiversity World (BDW) project we have created a flexible and extensible Web Services-based Grid environment for biodiversity researchers to solve problems in biodiversity and analyse biodiversity patterns. In this environment, heterogeneous and globally distributed biodiversity-related resources such as data sets and analytical tools are made available to be accessed and assembled by users into workflows to perform complex scientific experiments. One such experiment is bioclimatic modelling of the geographical distribution of individual species using climate variables in order to explain past and future climate-related changes in species distribution. Data sources and analytical tools required for such analysis of species distribution are widely dispersed, available on heterogeneous platforms, present data in different formats and lack inherent interoperability. The present BDW system brings all these disparate units together so that the user can combine tools with little thought as to their original availability, data formats and interoperability. The new prototype BDW system architecture not only brings together heterogeneous resources but also enables utilisation of computational resources and provides a secure access to BDW resources via a federated security model. We describe features of the new BDW system and its security model which enable user authentication from a workflow application as part of workflow execution

    Mutation update for the SATB2 gene

    Get PDF
    SATB2-associated syndrome (SAS) is an autosomal dominant neurodevelopmental disorder caused by alterations in the SATB2 gene. Here we present a review of published pathogenic variants in the SATB2 gene to date and report 38 novel alterations found in 57 additional previously unreported individuals. Overall, we present a compilation of 120 unique variants identified in 155 unrelated families ranging from single nucleotide coding variants to genomic rearrangements distributed throughout the entire coding region of SATB2. Single nucleotide variants predicted to result in the occurrence of a premature stop codon were the most commonly seen (51/120=42.5%) followed by missense variants (31/120=25.8%). We review the rather limited functional characterization of pathogenic variants and discuss current understanding of the consequences of the different molecular alterations. We present an expansive phenotypic review along with novel genotype-phenotype correlations. Lastly, we discuss current knowledge on animal models and present future prospects. This review should help provide better guidance for the care of individuals diagnosed with SAS
    corecore