First-principles molecular dynamics simulations based on density-functional
theory and the projector augmented wave (PAW) technique have been used to study
the structural and dynamical properties of liquid iron under Earth's core
conditions. As evidence for the accuracy of the techniques, we present PAW
results for a range of solid-state properties of low- and high-pressure iron,
and compare them with experimental values and the results of other
first-principles calculations. In the liquid-state simulations, we address
particular effort to the study of finite-size effects, Brillouin-zone sampling
and other sources of technical error. Results for the radial distribution
function, the diffusion coefficient and the shear viscosity are presented for a
wide range of thermodynamic states relevant to the Earth's core. Throughout
this range, liquid iron is a close-packed simple liquid with a diffusion
coefficient and viscosity similar to those of typical simple liquids under
ambient conditions.Comment: 13 pages, 8 figure