224 research outputs found

    <i>Trypanosoma brucei rhodesiense</i> transmitted by a single tsetse fly bite in vervet monkeys as a model of human African trypanosomiasis

    Get PDF
    Sleeping sickness is caused by a species of trypanosome blood parasite that is transmitted by tsetse flies. To understand better how infection with this parasite leads to disease, we provide here the most detailed description yet of the course of infection and disease onset in vervet monkeys. One infected tsetse fly was allowed to feed on each host individual, and in all cases infections were successful. The characteristics of infection and disease were similar in all hosts, but the rate of progression varied considerably. Parasites were first detected in the blood 4-10 days after infection, showing that migration of parasites from the site of fly bite was very rapid. Anaemia was a key feature of disease, with a reduction in the numbers and average size of red blood cells and associated decline in numbers of platelets and white blood cells. One to six weeks after infection, parasites were observed in the cerebrospinal fluid (CSF), indicating that they had moved from the blood into the brain; this was associated with a white cell infiltration. This study shows that fly-transmitted infection in vervets accurately mimics human disease and provides a robust model to understand better how sleeping sickness develops

    Immunization with one Theileria parva strain results in similar level of CTL strain-specificity and protection compared to immunization with the three-component Muguga cocktail in MHC-matched animals

    Get PDF
    Abstract Background The tick-borne protozoan parasite Theileria parva causes a usually fatal cattle disease known as East Coast fever in sub-Saharan Africa, with devastating consequences for poor small-holder farmers. Immunity to T. parva, believed to be mediated by a cytotoxic T lymphocyte (CTL) response, is induced following natural infection and after vaccination with a live vaccine, known as the Infection and Treatment Method (ITM). The most commonly used version of ITM is a combination of parasites derived from three isolates (Muguga, Kiambu 5 and Serengeti-transformed), known as the “Muguga cocktail”. The use of a vaccine comprising several strains is believed to be required to induce a broad immune response effective against field challenge. In this study we investigated whether immunization with the Muguga cocktail induces a broader CTL response than immunization with a single strain (Muguga). Results Four MHC haplotype-matched pairs of cattle were immunized with either the trivalent Muguga cocktail or the single Muguga strain. CTL specificity was assessed on a panel of five different strains, and clonal responses to these strains were also assessed in one of the MHC-matched pairs. We did not find evidence for a broader CTL response in animals immunized with the Muguga cocktail compared to those immunized with the Muguga strain alone, in either the bulk or clonal CTL analyses. This was supported by an in vivo trial in which all vaccinated animals survived challenge with a lethal dose of the Muguga cocktail vaccine stabilate. Conclusion We did not observe any substantial differences in the immunity generated from animals immunized with either Muguga alone or the Muguga cocktail in the animals tested here, corroborating earlier results showing limited antigenic diversity in the Muguga cocktail. These results may warrant further field studies using single T. parva strains as future vaccine candidates

    Genome-wide association analysis identifies six new loci associated with forced vital capacity

    Get PDF
    Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10−8) with FVC in or near EFEMP1, BMP6, MIR129-2–HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease

    Coordination in climbing: effect of skill, practice and constraints manipulation

    Get PDF
    BACKGROUND: Climbing is a physical activity and sport involving many subdisciplines. Minimization of prolonged pauses, use of a relatively simple path through a route and smooth transitions between movements broadly define skilled coordination in climbing. OBJECTIVES: To provide an overview of the constraints on skilled coordination in climbing and to explore future directions in this emerging field. METHODS: A systematic literature review was conducted in 2014 and retrieved studies reporting perceptual and movement data during climbing tasks. To be eligible for the qualitative synthesis, studies were required to report perceptual or movement data during climbing tasks graded for difficulty. RESULTS: Qualitative synthesis of 42 studies was carried out, showing that skilled coordination in climbing is underpinned by superior perception of climbing opportunities; optimization of spatial-temporal features pertaining to body-to-wall coordination, the climb trajectory and hand-to-hold surface contact; and minimization of exploratory behaviour. Improvements in skilled coordination due to practice are related to task novelty and the difficulty of the climbing route relative to the individual's ability level. CONCLUSION: Perceptual and motor adaptations that improve skilled coordination are highly significant for improving the climbing ability level. Elite climbers exhibit advantages in detection and use of climbing opportunities when visually inspecting a route from the ground and when physically moving though a route. However, the need to provide clear guidelines on how to improve climbing skill arises from uncertainties regarding the impacts of different practice interventions on learning and transfer

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    Vaccination against trypanosomiasis: Can it be done or is the trypanosome truly the ultimate immune destroyer and escape artist?

    Get PDF
    To date, human African trypanosomiasis (HAT) still threatens millions of people throughout sub-Sahara Africa, and new approaches to disease prevention and treatment remain a priority. It is commonly accepted that HAT is fatal unless treatment is provided. However, despite the well-described general symptoms of disease progression during distinct stages of the infection, leading to encephalitic complications, coma and death, a substantial body of evidence has been reported suggesting that natural acquired immunity could occur. Hence, if under favorable conditions natural infections can lead to correct immune activation and immune protection against HAT, the development of an effective anti-HAT vaccine should remain a central goal in the fight against this disease.<br /> In this review, we will (1) discuss the vaccine candidates that have been proposed over the past years, (2) highlight the main obstacles that an efficient anti-trypanosomiasis vaccine needs to overcome and (3) critically reflect on the validity of the widely used murine model for HAT

    Approaches to vaccination against Theileria parva and Theileria annulata

    Get PDF
    Despite having different cell tropism, the pathogenesis and immunobiology of the diseases caused by Theileria parva and Theileria annulata are remarkably similar. Live vaccines have been available for both parasites for over 40 years, but although they provide strong protection, practical disadvantages have limited their widespread application. Efforts to develop alternative vaccines using defined parasite antigens have focused on the sporozoite and intracellular schizont stages of the parasites. Experimental vaccination studies using viral vectors expressing T. parva schizont antigens and T. parva and T. annulata sporozoite antigens incorporated in adjuvant have, in each case, demonstrated protection against parasite challenge in a proportion of vaccinated animals. Current work is investigating alternative antigen delivery systems in an attempt to improve the levels of protection. The genome architecture and protein-coding capacity of T. parva and T. annulata are remarkably similar. The major sporozoite surface antigen in both species and most of the schizont antigens are encoded by orthologous genes. The former have been shown to induce species cross-reactive neutralizing antibodies, and comparison of the schizont antigen orthologues has demonstrated that some of them display high levels of sequence conservation. Hence, advances in development of subunit vaccines against one parasite species are likely to be readily applicable to the other

    A Pre-clinical Animal Model of Trypanosoma brucei Infection Demonstrating Cardiac Dysfunction

    Get PDF
    African trypanosomiasis (AT), caused by Trypanosoma brucei species, results in both neurological and cardiac dysfunction and can be fatal if untreated. Research on the pathogenesis and treatment of the disease has centred to date on the characteristic neurological symptoms, whereas cardiac dysfunction (e.g. ventricular arrhythmias) in AT remains largely unstudied. Animal models of AT demonstrating cardiac dysfunction similar to that described in field cases of AT are critically required to transform our understanding of AT-induced cardiac pathophysiology and identify future treatment strategies. We have previously shown that T. brucei can interact with heart muscle cells (cardiomyocytes) to induce ventricular arrhythmias in ex vivo adult rat hearts. However, it is unknown whether the arrhythmias observed ex vivo are also present during in vivo infection in experimental animal models. Here we show for the first time the characterisation of ventricular arrhythmias in vivo in two animal models of AT infection using electrocardiographic (ECG) monitoring. The first model utilised a commonly used monomorphic laboratory strain, Trypanosoma brucei brucei Lister 427, whilst the second model used a pleomorphic laboratory strain, T. b. brucei TREU 927, which demonstrates a similar chronic infection profile to clinical cases. The frequency of ventricular arrhythmias and heart rate (HR) was significantly increased at the endpoint of infection in the TREU 927 infection model, but not in the Lister 427 infection model. At the end of infection, hearts from both models were isolated and Langendorff perfused ex vivo with increasing concentrations of the β-adrenergic agonist isoproterenol (ISO). Interestingly, the increased frequency of arrhythmias observed in vivo in the TREU 927 infection model was lost upon isolation of the heart ex vivo, but re-emerged with the addition of ISO. Our results demonstrate that TREU 927 infection modifies the substrate of the myocardium in such a way as to increase the propensity for ventricular arrhythmias in response to a circulating factor in vivo or β-adrenergic stimulation ex vivo. The TREU 927 infection model provides a new opportunity to accelerate our understanding of AT-related cardiac pathophysiology and importantly has the required sensitivity to monitor adverse cardiac-related electrical dysfunction when testing new therapeutic treatments for AT

    Two Theileria parva CD8 T Cell Antigen Genes Are More Variable in Buffalo than Cattle Parasites, but Differ in Pattern of Sequence Diversity

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methodology/Principal Findings:&lt;/b&gt; Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (similar to 12%) in Tp1 and in 320 positions (similar to 61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions/Significance:&lt;/b&gt; The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.&lt;/p&gt
    corecore