65 research outputs found

    Mindful Opportunity to Reflect on Experience: Interdisciplinary Mind–Body Medicine Skills Training for Health-care Professionals

    Get PDF
    Interventions that support employee wellness and resilience hold potential to improve patient care, increase staff engagement, and decrease burnout. This repeat-measures study evaluated whether an abbreviated version of mind–body medicine skills training could decrease stress and improve mindfulness among an interdisciplinary cohort of health-care professionals. The study also assessed whether participants incorporated the mind–body medicine skills into their personal and professional lives. Aggregate results from this unpaired cohort showed decreased stress and increased mindfulness. Postcourse surveys demonstrated increased personal and professional use of mind–body medicine skills. There was high favorability among participants. These preliminary results suggest that a modest investment of time and resources to learn mind–body medicine skills may positively affect employee wellness among health-care professionals. In addition, skills learned could translate into improved patient care and increased staff engagement. Further study with larger cohorts and a paired design is needed

    Non-negative Wigner functions in prime dimensions

    Get PDF
    According to a classical result due to Hudson, the Wigner function of a pure, continuous variable quantum state is non-negative if and only if the state is Gaussian. We have proven an analogous statement for finite-dimensional quantum systems. In this context, the role of Gaussian states is taken on by stabilizer states. The general results have been published in [D. Gross, J. Math. Phys. 47, 122107 (2006)]. For the case of systems of odd prime dimension, a greatly simplified proof can be employed which still exhibits the main ideas. The present paper gives a self-contained account of these methods.Comment: 5 pages. Special case of a result proved in quant-ph/0602001. The proof is greatly simplified, making the general case more accessible. To appear in Appl. Phys. B as part of the proceedings of the 2006 DPG Spring Meeting (Quantum Optics and Photonics section

    Macdonald Polynomials from Sklyanin Algebras: A Conceptual Basis for the pp-Adics-Quantum Group Connection

    Full text link
    We establish a previously conjectured connection between pp-adics and quantum groups. We find in Sklyanin's two parameter elliptic quantum algebra and its generalizations, the conceptual basis for the Macdonald polynomials, which ``interpolate'' between the zonal spherical functions of related real and pp\--adic symmetric spaces. The elliptic quantum algebras underlie the ZnZ_n\--Baxter models. We show that in the n \air \infty limit, the Jost function for the scattering of {\em first} level excitations in the ZnZ_n\--Baxter model coincides with the Harish\--Chandra\--like cc\--function constructed from the Macdonald polynomials associated to the root system A1A_1. The partition function of the Z2Z_2\--Baxter model itself is also expressed in terms of this Macdonald\--Harish\--Chandra\ cc\--function, albeit in a less simple way. We relate the two parameters qq and tt of the Macdonald polynomials to the anisotropy and modular parameters of the Baxter model. In particular the pp\--adic ``regimes'' in the Macdonald polynomials correspond to a discrete sequence of XXZ models. We also discuss the possibility of ``qq\--deforming'' Euler products.Comment: 25 page

    Non Linear Current Response of a Many-Level Tunneling System: Higher Harmonics Generation

    Full text link
    The fully nonlinear response of a many-level tunneling system to a strong alternating field of high frequency ω\omega is studied in terms of the Schwinger-Keldysh nonequilibrium Green functions. The nonlinear time dependent tunneling current I(t)I(t) is calculated exactly and its resonance structure is elucidated. In particular, it is shown that under certain reasonable conditions on the physical parameters, the Fourier component InI_{n} is sharply peaked at n=ΔEℏωn=\frac {\Delta E} {\hbar \omega}, where ΔE\Delta E is the spacing between two levels. This frequency multiplication results from the highly nonlinear process of nn photon absorption (or emission) by the tunneling system. It is also conjectured that this effect (which so far is studied mainly in the context of nonlinear optics) might be experimentally feasible.Comment: 28 pages, LaTex, 7 figures are available upon request from [email protected], submitted to Phys.Rev.

    On Classification of N=2 Supersymmetric Theories, (e-mail uncorrupted version)

    Full text link
    We find a relation between the spectrum of solitons of massive N=2N=2 quantum field theories in d=2d=2 and the scaling dimensions of chiral fields at the conformal point. The condition that the scaling dimensions be real imposes restrictions on the soliton numbers and leads to a classification program for symmetric N=2N=2 conformal theories and their massive deformations in terms of a suitable generalization of Dynkin diagrams (which coincides with the A--D--E Dynkin diagrams for minimal models). The Landau-Ginzburg theories are a proper subset of this classification. In the particular case of LG theories we relate the soliton numbers with intersection of vanishing cycles of the corresponding singularity; the relation between soliton numbers and the scaling dimensions in this particular case is a well known application of Picard-Lefschetz theory.Comment: 116 pages, HUTP-92/A064 and SISSA-203/92/E

    Transport-theoretical Description of Nuclear Reactions

    Full text link
    In this review we first outline the basics of transport theory and its recent generalization to off-shell transport. We then present in some detail the main ingredients of any transport method using in particular the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) implementation of this theory as an example. We discuss the potentials used, the ground state initialization and the collision term, including the in-medium modifications of the latter. The central part of this review covers applications of GiBUU to a wide class of reactions, starting from pion-induced reactions over proton and antiproton reactions on nuclei to heavy-ion collisions (up to about 30 AGeV). A major part concerns also the description of photon-, electron- and neutrino-induced reactions (in the energy range from a few 100 MeV to a few 100 GeV). For this wide class of reactions GiBUU gives an excellent description with the same physics input and the same code being used. We argue that GiBUU is an indispensable tool for any investigation of nuclear reactions in which final-state interactions play a role. Studies of pion-nucleus interactions, nuclear fragmentation, heavy ion reactions, hyper nucleus formation, hadronization, color transparency, electron-nucleus collisions and neutrino-nucleus interactions are all possible applications of GiBUU and are discussed in this article.Comment: 173 pages, review article. v2: Text-rearrangements in sects. 2 and 3 (as accepted for publication in Physics Reports
    • 

    corecore