446 research outputs found

    Layered convection as the origin of Saturn's luminosity anomaly

    Get PDF
    As they keep cooling and contracting, Solar System giant planets radiate more energy than they receive from the Sun. Applying the first and second principles of thermodynamics, one can determine their cooling rate, luminosity, and temperature at a given age. Measurements of Saturn's infrared intrinsic luminosity, however, reveal that this planet is significantly brighter than predicted for its age. This excess luminosity is usually attributed to the immiscibility of helium in the hydrogen-rich envelope, leading to "rains" of helium-rich droplets. Existing evolution calculations, however, suggest that the energy released by this sedimentation process may not be sufficient to resolve the puzzle. Here, we demonstrate using planetary evolution models that the presence of layered convection in Saturn's interior, generated, like in some parts of Earth oceans, by the presence of a compositional gradient, significantly reduces its cooling. It can explain the planet's present luminosity for a wide range of configurations without invoking any additional source of energy. This suggests a revision of the conventional homogeneous adiabatic interior paradigm for giant planets, and questions our ability to assess their heavy element content. This reinforces the possibility for layered convection to help explaining the anomalously large observed radii of extrasolar giant planets.Comment: Published in Nature Geoscience. Online publication date: April 21st, 2013. Accepted version before journal editing and with Supplementary Informatio

    Understanding communication networks in the emergency department

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Emergency departments (EDs) are high pressure health care settings involving complex interactions between staff members in providing and organising patient care. Without good communication and cooperation amongst members of the ED team, quality of care is at risk. This study examined the problem-solving, medication advice-seeking and socialising networks of staff working in an Australian hospital ED.</p> <p>Methods</p> <p>A social network survey (Response Rate = 94%) was administered to all ED staff (n = 109) including doctors, nurses, allied health professionals, administrative staff and ward assistants. Analysis of the network characteristics was carried out by applying measures of density (the extent participants are concentrated), connectedness (how related they are), isolates (how segregated), degree centrality (who has most connections measured in two ways, in-degree, the number of ties directed to an individual and out-degree, the number of ties directed from an individual), betweenness centrality (who is important or powerful), degree of separation (how many ties lie between people) and reciprocity (how bi-directional are interactions).</p> <p>Results</p> <p>In all three networks, individuals were more closely connected to colleagues from within their respective professional groups. The problem-solving network was the most densely connected network, followed by the medication advice network, and the loosely connected socialising network. ED staff relied on each other for help to solve work-related problems, but some senior doctors, some junior doctors and a senior nurse were important sources of medication advice for their ED colleagues.</p> <p>Conclusions</p> <p>Network analyses provide useful ways to assess social structures in clinical settings by allowing us to understand how ED staff relate within their social and professional structures. This can provide insights of potential benefit to ED staff, their leaders, policymakers and researchers.</p

    Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms

    Get PDF
    Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3â€Č-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for transcriptional stability

    Orbitally forced ice sheet fluctuations during the Marinoan Snowball Earth glaciation

    Get PDF
    Two global glaciations occurred during the Neoproterozoic. Snowball Earth theory posits that these were terminated after millions of years of frigidity when initial warming from rising atmospheric CO2 concentrations was amplified by the reduction of ice cover and hence a reduction in planetary albedo. This scenario implies that most of the geological record of ice cover was deposited in a brief period of melt-back. However, deposits in low palaeo-latitudes show evidence of glacial–interglacial cycles. Here we analyse the sedimentology and oxygen and sulphur isotopic signatures of Marinoan Snowball glaciation deposits from Svalbard, in the Norwegian High Arctic. The deposits preserve a record of oscillations in glacier extent and hydrologic conditions under uniformly high atmospheric CO2 concentrations. We use simulations from a coupled three-dimensional ice sheet and atmospheric general circulation model to show that such oscillations can be explained by orbital forcing in the late stages of a Snowball glaciation. The simulations suggest that while atmospheric CO2 concentrations were rising, but not yet at the threshold required for complete melt-back, the ice sheets would have been sensitive to orbital forcing. We conclude that a similar dynamic can potentially explain the complex successions observed at other localities

    Development and validation of a risk model for predicting adverse drug reactions in older people during hospital stay: Brighton Adverse Drug Reactions Risk (BADRI) model

    Get PDF
    BACKGROUND: Older patients are at an increased risk of developing adverse drug reactions (ADR). Of particular concern are the oldest old, which constitute an increasingly growing population. Having a validated clinical tool to identify those older patients at risk of developing an ADR during hospital stay would enable healthcare staff to put measures in place to reduce the risk of such an event developing. The current study aimed to (1) develop and (2) validate an ADR risk prediction model. METHODS: We used a combination of univariate analysis and multivariate binary logistic regression to identify clinical risk factors for developing an ADR in a population of older people from a UK teaching hospital. The final ADR risk model was then validated in a European population (European dataset). RESULTS: Six-hundred-ninety patients (median age 85 years) were enrolled in the development stage of the study. Ninety-five reports of ADR were confirmed by independent review in these patients. Five clinical variables were identified through multivariate analysis and included in our final model; each variable was attributed a score of 1. Internal validation produced an AUROC of 0.74, a sensitivity of 80%, and specificity of 55%. During the external validation stage the AUROC was 0.73, with sensitivity and specificity values of 84% and 43% respectively. CONCLUSIONS: We have developed and successfully validated a simple model to use ADR risk score in a population of patients with a median age of 85, i.e. the oldest old. The model is based on 5 clinical variables (≄8 drugs, hyperlipidaemia, raised white cell count, use of anti-diabetic agents, length of stay ≄12 days), some of which have not been previously reported

    The basidiomycetous yeast Trichosporon may cause severe lung exacerbation in cystic fibrosis patients - clinical analysis of Trichosporon positive patients in a Munich cohort

    Get PDF
    Background: The relevance of Trichosporon species for cystic fibrosis (CF) patients has not yet been extensively investigated. Methods: The clinical course of CF patients with Trichosporon spp. in their respiratory secretions was analysed between 2003 and 2010 in the Munich CF center. All respiratory samples of 360 CF patients (0 - 52.4 years; mean FEV1 2010 81.4% pred) were investigated. Results: In 8 patients (2.2%, 3 male, mean age 21.8 years) Trichosporon was detected at least once. One patient carried T. asahii. One patient carried T. mycotoxinivorans and one patient T. inkin as determined by DNA sequencing. As potential risk factors for Trichosporon colonization steroid treatment, allergic bronchopulmonary aspergillosis (ABPA) and CF associated diabetes were identified in 6, 5, and 2 patients respectively. For one patient, the observation period was not long enough to determine the clinical course. One patient had only a single positive specimen and exhibited a stable clinical course determined by change in forced expiratory volume in one second (FEV1), body-mass-index (BMI), C-reactive protein (CRP) and immunoglobulin G (IgG). Of 6 patients with repeatedly positive specimen (mean detection period 4.5 years), 4 patients had a greater decline in FEV1 than expected, 2 of these a decline in BMI and 1 an increase in IgG above the reference range. 2 patients received antimycotic treatment: one patient with a tormenting dry cough subjectively improved under Amphotericin B inhalation; one patient with a severe exacerbation due to T. inkin was treated with i.v. Amphotericin B, oral Voriconazole and Posaconazole which stabilized the clinical condition. Conclusions: This study demonstrates the potential association of Trichosporon spp. with severe exacerbations in CF patients

    Molecular design and control of fullerene-based bi-thermoelectric materials

    Get PDF
    Molecular junctions are a versatile test bed for investigating nanoscale thermoelectricity and contribute to the design of new cost-effective environmentally friendly organic thermoelectric materials. It was suggested that transport resonances associated with discrete molecular levels could play a key role in thermoelectric performance, but no direct experimental evidence has been reported. Here we study single-molecule junctions of the endohedral fullerene Sc3N@C8 connected to gold electrodes using a scanning tunnelling microscope. We find that the magnitude and sign of the thermopower depend strongly on the orientation of the molecule and on applied pressure. Our calculations show that Sc3N inside the fullerene cage creates a sharp resonance near the Fermi level, whose energetic location, and hence the thermopower, can be tuned by applying pressure. These results reveal that Sc3N@C80 is a bi-thermoelectric material, exhibiting both positive and negative thermopower, and provide an unambiguous demonstration of the importance of transport resonances in molecular junctions

    A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279

    Get PDF
    It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight. The size of the emitting zone and the location of this region relative to the central supermassive black hole are, however, poorly known, with estimates ranging from light-hours to a light-year or more. Here we report the coincidence of a gamma-ray flare with a dramatic change of optical polarization angle. This provides evidence for co-spatiality of optical and gamma-ray emission regions and indicates a highly ordered jet magnetic field. The results also require a non-axisymmetric structure of the emission zone, implying a curved trajectory for the emitting material within the jet, with the dissipation region located at a considerable distance from the black hole, at about 10^5 gravitational radii.Comment: Published in Nature issued on 18 February 2010. Corresponding authors: Masaaki Hayashida and Greg Madejsk
    • 

    corecore