1,611 research outputs found

    Note on a result of Morse and Bolt

    Get PDF
    A result given without derivation by Morse and Bolt [1] pertaining to the reflection of a spherical sound wave from an absorbent surface is investigated. It is shown that the result as given is not quite accurate

    More loosely bound hadron molecules at CDF?

    Get PDF
    In a recent paper we have proposed a method to estimate the prompt production cross section of X(3872) at the Tevatron assuming that this particle is a loosely bound molecule of a D and a D*bar meson. Under this hypothesis we find that it is impossible to explain the high prompt production cross section found by CDF at sigma(X(3872)) \sim 30-70 nb as our theoretical prediction is about 300 times smaller than the measured one. Following our work, Artoisenet and Braaten, have suggested that final state interactions in the DD*bar system might be so strong to push the result we obtained for the cross section up to the experimental value. Relying on their conclusions we show that the production of another very narrow loosely bound molecule, the X_s=D_s D_s*bar, could be similarly enhanced. X_s should then be detectable at CDF with a mass of 4080 MeV and a prompt production cross section of sigma(X_s) \sim 1-3 nb.Comment: Minor revisions made. To appear in Phys Lett

    Self-organised criticality in base-pair breathing in DNA with a defect

    Full text link
    We analyse base-pair breathing in a DNA sequence of 12 base-pairs with a defective base at its centre. We use both all-atom molecular dynamics (MD) simulations and a system of stochastic differential equations (SDE). In both cases, Fourier analysis of the trajectories reveals self-organised critical behaviour in the breathing of base-pairs. The Fourier Transforms (FT) of the interbase distances show power-law behaviour with gradients close to -1. The scale-invariant behaviour we have found provides evidence for the view that base-pair breathing corresponds to the nucleation stage of large-scale DNA opening (or 'melting') and that this process is a (second-order) phase transition. Although the random forces in our SDE system were introduced as white noise, FTs of the displacements exhibit pink noise, as do the displacements in the AMBER/MD simulations.Comment: 18 pages, 8 figure

    On the Initial Conditions for Brane Inflation

    Get PDF
    String theory gives rise to various mechanisms to generate primordial inflation, of which ``brane inflation'' is one of the most widely considered. In this scenario, inflation takes place while two branes are approaching each other, and the modulus field representing the separation between the branes plays the role of the inflaton field. We study the phase space of initial conditions which can lead to a sufficiently long period of cosmological inflation, and find that taking into account the possibility of nonvanishing initial momentum can significantly change the degree of fine tuning of the required initial conditions.Comment: 11 pages, 2 figure

    Diversity and impact of rare variants in genes encoding the platelet G protein-coupled receptors

    Get PDF
    Platelet responses to activating agonists are influenced by common population variants within or near G protein-coupled receptor (GPCR) genes that affect receptor activity. However, the impact of rare GPCR gene variants is unknown. We describe the rare single nucleotide variants (SNVs) in the coding and splice regions of 18 GPCR genes in 7,595 exomes from the 1,000-genomes and Exome Sequencing Project databases and in 31 cases with inherited platelet function disorders (IPFDs). In the population databases, the GPCR gene target regions contained 740 SNVs (318 synonymous, 410 missense, 7 stop gain and 6 splice region) of which 70 % had global minor allele frequency (MAF) < 0.05 %. Functional annotation using six computational algorithms, experimental evidence and structural data identified 156/740 (21 %) SNVs as potentially damaging to GPCR function, most commonly in regions encoding the transmembrane and C-terminal intracellular receptor domains. In 31 index cases with IPFDs (Gi-pathway defect n=15; secretion defect n=11; thromboxane pathway defect n=3 and complex defect n=2) there were 256 SNVs in the target regions of 15 stimulatory platelet GPCRs (34 unique; 12 with MAF< 1 % and 22 with MAF≄ 1 %). These included rare variants predicting R122H, P258T and V207A substitutions in the P2Y12 receptor that were annotated as potentially damaging, but only partially explained the platelet function defects in each case. Our data highlight that potentially damaging variants in platelet GPCR genes have low individual frequencies, but are collectively abundant in the population. Potentially damaging variants are also present in pedigrees with IPFDs and may contribute to complex laboratory phenotypes

    The magnetic mass of transverse gluon, the B-meson weak decay vertex and the triality symmetry of octonion

    Full text link
    With an assumption that in the Yang-Mills Lagrangian, a left-handed fermion and a right-handed fermion both expressed as quaternion make an octonion which possesses the triality symmetry, I calculate the magnetic mass of the transverse self-dual gluon from three loop diagram, in which a heavy quark pair is created and two self-dual gluons are interchanged. The magnetic mass of the transverse gluon depends on the mass of the pair created quarks, and in the case of charmed quark pair creation, the magnetic mass mmagm_{mag} becomes approximately equal to TcT_c at T=Tc∌1.14ΛMSˉ∌260T=T_c\sim 1.14\Lambda_{\bar{MS}}\sim 260MeV. A possible time-like magnetic gluon mass from two self-dual gluon exchange is derived, and corrections in the B-meson weak decay vertices from the two self-dual gluon exchange are also evaluated.Comment: 22 pages, 9 figure

    Properties of the Interstellar Medium and the Propagation of Cosmic Rays in the Galaxy

    Get PDF
    The problem of the origin of cosmic rays in the shocks produced by supernova explosions at energies below the so called 'knee' (at ~3*106^6 GeV) in the energy spectrum is addressed, with special attention to the propagation of the particles through the inhomogenious interstellar medium and the need to explain recent anisotropy results, [1]. It is shown that the fractal character of the matter density and magnetic field distribution leads to the likelihood of a substantial increase of spatial fluctuations in the cosmic ray energy spectra. While the spatial distribution of cosmic rays in the vicinity of their sources (eg. inside the Galactic disk) does not depend much on the character of propagation and is largely determined by the distribution of their sources, the distribution at large distances from the Galactic disk depends strongly on the character of the propagation. In particular, the fractal character of the ISM leads to what is known as 'anomalous diffusion' and such diffusion helps us to understand the formation of Cosmic Ray Halo. Anomalous diffusion allows an explanation of the recent important result from the Chacaltaya extensive air shower experiment [1], viz. a Galactic Plane Enhancement of cosmic ray intensity in the Outer Galaxy, which is otherwise absent for the case of the so-called 'normal' diffusion. All these effects are for just one reason: anomalous diffusion emphasizes the role of local phenomena in the formation of cosmic ray characteristics in our Galaxy and elsewhere.Comment: 18 pages, 5 figures, accepted by Astropartoicle Physic

    Path integral duality and Planck scale corrections to the primordial spectrum in exponential inflation

    Get PDF
    The enormous red-shifting of the modes during the inflationary epoch suggests that physics at the Planck scale may modify the standard, nearly, scale-invariant, primordial, density perturbation spectrum. Under the principle of path-integral duality, the space-time behaves as though it has a minimal length LPL_{_{\rm P}} (which we shall assume to be of the order of the Planck length), a feature that is expected to arise when the quantum gravitational effects on the matter fields have been taken into account. Using the method of path integral duality, in this work, we evaluate the Planck scale corrections to the spectrum of density perturbations in the case of exponential inflation. We find that the amplitude of the corrections is of the order of (H/MP)({\cal H}/M_{_{\rm P}}), where H{\cal H} and MPM_{_{\rm P}} denote the inflationary and the Planck energy scales, respectively. We also find that the corrections turn out to be completely independent of scale. We briefly discuss the implications of our result, and also comment on how it compares with an earlier result.Comment: 12 pages, 1 figure, RevTex4 forma

    The Importance of Time Congruity in the Organisation.

    Get PDF
    In 1991 Kaufman, Lane, and Lindquist proposed that time congruity in terms of an individual's time preferences and the time use methods of an organisation would lead to satisfactory performance and enhancement of quality of work and general life. The research reported here presents a study which uses commensurate person and job measures of time personality in an organisational setting to assess the effects of time congruity on one aspect of work life, job-related affective well-being. Results show that time personality and time congruity were found to have direct effects on well-being and the influence of time congruity was found to be mediated through time personality, thus contributing to the person–job (P–J) fit literature which suggests that direct effects are often more important than indirect effects. The study also provides some practical examples of ways to address some of the previously cited methodological issues in P–J fit research
    • 

    corecore