32 research outputs found

    Stretching the spines of gymnasts: a review

    Get PDF
    Gymnastics is noted for involving highly specialized strength, power, agility and flexibility. Flexibility is perhaps the single greatest discriminator of gymnastics from other sports. The extreme ranges of motion achieved by gymnasts require long periods of training, often occupying more than a decade. Gymnasts also start training at an early age (particularly female gymnasts), and the effect of gymnastics training on these young athletes is poorly understood. One of the concerns of many gymnastics professionals is the training of the spine in hyperextension-the ubiquitous 'arch' seen in many gymnastics positions and movements. Training in spine hyperextension usually begins in early childhood through performance of a skill known as a back-bend. Does practising a back-bend and other hyperextension exercises harm young gymnasts? Current information on spine stretching among gymnasts indicates that, within reason, spine stretching does not appear to be an unusual threat to gymnasts' health. However, the paucity of information demands that further study be undertaken

    Campylobacter jejuni transcriptome changes during loss of culturability in water

    Get PDF
    Background: Water serves as a potential reservoir for Campylobacter, the leading cause of bacterial gastroenteritis in humans. However, little is understood about the mechanisms underlying variations in survival characteristics between different strains of C. jejuni in natural environments, including water. Results: We identified three Campylobacter jejuni strains that exhibited variability in their ability to retain culturability after suspension in tap water at two different temperatures (4°C and 25°C). Of the three strains C. jejuni M1 exhibited the most rapid loss of culturability whilst retaining viability. Using RNAseq transcriptomics, we characterised C. jejuni M1 gene expression in response to suspension in water by analyzing bacterial suspensions recovered immediately after introduction into water (Time 0), and from two sampling time/temperature combinations where considerable loss of culturability was evident, namely (i) after 24 h at 25°C, and (ii) after 72 h at 4°C. Transcript data were compared with a culture-grown control. Some gene expression characteristics were shared amongst the three populations recovered from water, with more genes being up-regulated than down. Many of the up-regulated genes were identified in the Time 0 sample, whereas the majority of down-regulated genes occurred in the 25°C (24 h) sample. Conclusions: Variations in expression were found amongst genes associated with oxygen tolerance, starvation and osmotic stress. However, we also found upregulation of flagellar assembly genes, accompanied by down-regulation of genes involved in chemotaxis. Our data also suggested a switch from secretion via the sec system to via the tat system, and that the quorum sensing gene luxS may be implicated in the survival of strain M1 in water. Variations in gene expression also occurred in accessory genome regions. Our data suggest that despite the loss of culturability, C. jejuni M1 remains viable and adapts via specific changes in gene expression

    Bright light therapy versus physical exercise to prevent co-morbid depression and obesity in adolescents and young adults with attention-deficit/hyperactivity disorder: study protocol for a randomized controlled trial

    Get PDF
    Background: The risk for major depression and obesity is increased in adolescents and adults with attention-deficit / hyperactivity disorder (ADHD) and adolescent ADHD predicts adult depression and obesity. Non-pharmacological interventions to treat and prevent these co-morbidities are urgently needed. Bright light therapy (BLT) improves day– night rhythm and is an emerging therapy for major depression. Exercise intervention (EI) reduces obesity and improves depressive symptoms. To date, no randomized controlled trial (RCT) has been performed to establish feasibility and efficacy of these interventions targeting the prevention of co-morbid depression and obesity in ADHD. We hypothesize that the two manualized interventions in combination with mobile health-based monitoring and reinforcement will result in less depressive symptoms and obesity compared to treatment as usual in adolescents and young adults with ADHD. Methods: This trial is a prospective, pilot phase-IIa, parallel-group RCT with three arms (two add-on treatment groups [BLT, EI] and one treatment as usual [TAU] control group). The primary outcome variable is change in the Inventory of Depressive Symptomatology total score (observer-blinded assessment) between baseline and ten weeks of intervention. This variable is analyzed with a mixed model for repeated measures approach investigating the treatment effect with respect to all three groups. A total of 330 participants with ADHD, aged 14 – < 30 years, will be screened at the four study centers. To establish effect sizes, the sample size was planned at the liberal significance level of α = 0.10 (two-sided) and the power of 1-β = 80% in order to find medium effects. Secondary outcomes measures including change in obesity, ADHD symptoms, general psychopathology, health-related quality of life, neurocognitive function, chronotype, and physical fitness are explored after the end of the intervention and at the 12-week follow-up. This is the first pilot RCT on the use of BLT and EI in combination with mobile health-based monitoring and reinforcement targeting the prevention of co-morbid depression and obesity in adolescents and young adults with ADHD. If at least medium effects can be established with regard to the prevention of depressive symptoms and obesity, a larger scale confirmatory phase-III trial may be warranted.The trial is funded by the EU Framework Programme for Research and Innovation, Horizon 2020 (Project no. 667302). Funding period: January 2016–December 2020. This funding source had no role in the design of this study and will not have any role during its execution, analyses, interpretation of the data, or decision to submit results. Some local funds additionally contributed to carry out this study, especially for the preparation of the interventions: FBO research activity is by the Spanish Ministry of Economy and Competitiveness – MINECO (RYC-2011-09011) and by the University of Granada, Plan Propio de Investigación 2016, Excellence actions: Unit of Excellence on Exercise and Health (UCEES)

    Abridged version of the AWMF guideline for the medical clinical diagnostics of indoor mould exposure

    Get PDF

    Hybrid discrete dislocation models for fatigue crack growth

    Get PDF
    A framework for accurately modeling fatigue crack growth in ductile crystalline solids is necessarily multiscale The creation of new free surface occurs at the atomistic scale, where the material's cohesive strength is controlled by the local chemistry On the other hand, significant dissipation during fatigue crack growth takes place at a size scale that can be modeled appropriately by conventional continuum mechanics. The intermediate size scale where the discreteness of dislocations comes Into play is the main origin of the hysteresis needed for fatigue and of the high stresses required for atomistic separation to take place. We focus on recent developments which permit analyses of fatigue crack growth involving the direct coupling of disparate size scales. Although no analyses have been carried out directly coupling size scales from the atomic to the conventional continuum, the ingredients to do so are in place. We provide background that illustrates the key role played by the intermediate discrete dislocation size scale and review steps that have been taken to permit direct size scale coupling. The prospects and modeling needs for further developments are also discussed (C) 2009 Elsevier Ltd All rights reserved

    Fatigue crack growth from a cracked elastic particle into a ductile matrix

    Get PDF
    The monotonic and cyclic crack growth rate of cracks is strongly influenced by the microstructure. Here, the growth of cracks emanating from pre-cracked micron-scale elastic particles and growing into single crystals is investigated, with a focus on the effects of (i) plastic confinement due to the elastic particle and (ii) elastic modulus mismatch between the reinforcement and matrix phases. Due to the small sizes of the particles and cracks, plasticity in the ductile crystal is modelled using a 2D discrete dislocation plasticity framework wherein dislocations are modelled as line singularities in an isotropic elastic isotropic material. Crack growth is modelled using a cohesive surface. Calculations reveal a threshold for fatigue crack growth and a transition to Paris power-law behavior, both depending on the existence of the elastic particle and the modulus mismatch. For a matched-modulus particle, the threshold is reduced by 25% and is attributed to slip blockage by the particle. For a high-modulus particle, the threshold is reduced by 50% due to the enhanced stress intensity factor caused by elastic mismatch and due to some slip blockage. However, crack growth halts after some amount of crack advance due to the decreasing effect of elastic mismatch and slip blocking as the crack moves away from the particle. The broad results here are compared with experimental observations in the literature, and are consistent in a number of respects. These results show that fatigue crack growth from micron-scale particles is strongly influenced by plasticity size effects, elastic mismatch, and particle constraints on plastic flow, all of which are captured within a discrete dislocation plasticity framework.

    No association between striatal dopamine transporter binding and body mass index: A multi-center European study in healthy volunteers

    No full text
    INTRODUCTION: Dopamine is one among several neurotransmitters that regulate food intake and overeating. Thus, it has been linked to the pathophysiology of obesity and high body mass index (BMI). Striatal dopamine D(2) receptor availability is lower in obesity and there are indications that striatal dopamine transporter (DAT) availability is also decreased. In this study, we tested whether BMI and striatal DAT availability are associated. METHODS: The study included 123 healthy individuals from a large European multi-center database. They had a BMI range of 18.2-41.1kg/m(2) and were scanned using [(123)I]FP-CIT SPECT imaging. Scans were analyzed with both region-of-interest and voxel-based analysis to determine the binding potential for DAT availability in the caudate nucleus and putamen. A direct relation between BMI and DAT availability was assessed and groups with high and low BMI were compared for DAT availability. RESULTS: No association between BMI and striatal DAT availability was found. CONCLUSION: The lack of an association between BMI and striatal DAT availability suggests that the regulation of striatal synaptic dopamine levels by DAT plays no or a limited role in the pathophysiology of overweight and obesity.status: publishe
    corecore