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The monotonic and cyclic crack growth rate of cracks is strongly influenced by
the microstructure. Here, the growth of cracks emanating from pre-cracked
micron-scale elastic particles and growing into single crystals is investigated, with
a focus on the effects of (i) plastic confinement due to the elastic particle and (ii)
elastic modulus mismatch between the reinforcement and matrix phases. Due to
the small sizes of the particles and cracks, plasticity in the ductile crystal is
modelled using a 2D discrete dislocation plasticity framework wherein disloca-
tions are modelled as line singularities in an isotropic elastic isotropic material.
Crack growth is modelled using a cohesive surface. Calculations reveal
a threshold for fatigue crack growth and a transition to Paris power-law
behavior, both depending on the existence of the elastic particle and the modulus
mismatch. For a matched-modulus particle, the threshold is reduced by 25% and
is attributed to slip blockage by the particle. For a high-modulus particle, the
threshold is reduced by 50% due to the enhanced stress intensity factor caused by
elastic mismatch and due to some slip blockage. However, crack growth halts
after some amount of crack advance due to the decreasing effect of elastic
mismatch and slip blocking as the crack moves away from the particle. The broad
results here are compared with experimental observations in the literature, and
are consistent in a number of respects. These results show that fatigue crack
growth from micron-scale particles is strongly influenced by plasticity size effects,
elastic mismatch, and particle constraints on plastic flow, all of which are
captured within a discrete dislocation plasticity framework.

Keywords: discrete dislocations; cracked particle; crack growth; defects in solids

1. Introduction

A wide variety of structural alloys contain brittle particles dispersed in a ductile metallic
matrix. While such particles are sometimes added for structural purposes, more often they
arise during processing. These particles, or inclusions, are often undesirable byproducts of
the material fabrication because fracture can originate by particle cracking followed by
propagation into the surrounding ductile matrix. In particular, under cyclic loading
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conditions, cracks formed during processing or during the initial stages of loading will

grow and ultimately lead to failure of the structure or component. Figure 1 shows one

example of such fatigue crack growth from a particle in an Al-7075 alloy. The factors

governing the propagation of a crack from a brittle particle into a surrounding ductile

phase are thus of considerable practical importance for applications of many structural

metals.
As a result of the problem’s importance, computational and modelling studies of crack

growth across an interface have been carried out under both monotonic and cyclic loading

conditions, e.g. [1–8]. Some studies consider the materials on each side of the interface to

deform plastically but with a mismatch in flow strength [9–11] while other studies consider

one phase elastic and the other plastic [12]. Heterogeneity in material properties affects

crack growth because: (i) the mismatch in material properties affects the near-crack tip

stress distribution when the crack tip is near the interface; and (ii) there is typically

a mismatch in the crack growth resistance of the phases on either side of the interface [13].

While the focus in previous studies has mainly been on crack growth across or along an

interface, our aim is to model the situation depicted in Figure 1 where a crack initiates in

a brittle particle and then grows into a ductile matrix. Our interest is in understanding the

role of constraints on plastic flow due to the particle and the effect of elastic mismatch on

the crack growth, both in the limit of micron-scale particles where plasticity size effects are

known to play an important role.
Typically fatigue calculations are carried out within a framework where a fatigue crack

growth law, e.g. a Paris law or a Coffin-Manson law, is postulated a priori and the

emphasis is on calculating the driving force. While such laws can be calibrated for bulk

materials through a suite of experimental studies under controlled loading situations and

for long cracks, the resulting laws may not apply in other situations such as near an

interface and/or for microstructurally small cracks, in which the plastic fields may be

modified due to constraint and size effects. For instance, Gall et al. [8] use a continuum

cyclic plasticity model to compute plastic strain ranges ahead of a cracked particle, but

average over a size smaller than 1 mm in front of the crack to obtain the driving force used

in a subsequent crack growth law. While providing some guidance, the applicability of the

assumed constitutive behavior is questionable. To account differences between small and

large scales, continuum models have been developed to move from small cracks to large

cracks [14,15], but such models introduce additional parameters to characterize the fatigue

behavior, which require extensive calibration and employ assumptions whose origins lie in

concepts emerging from continuum plasticity.

10 cycles 200 cycles1 cycle

10 µm

1 cycle

Figure 1. Fatigue crack initiating from a micron-scale particle and growing into the Al matrix in Al
7075 (Courtesy of Northrop-Grumman Corporation).
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Recent work has avoided assumptions of continuum plasticity by basing the plastic

deformation on the creation, motion, and annihilation of dislocations. These discrete

dislocation (DD) models have been shown to predict a host of phenomena, such as size-

effects in yielding, fracture, sliding, indentation, and polycrystals [16–22], not accounted

for in conventional continuum plasticity. In particular, DD studies of fatigue crack growth

have been carried out [17,18,24–27] that provide insight and guidance into fatigue crack

growth problems where continuum plasticity and standard fatigue laws may be

inapplicable. Most importantly for our current work is that these DD analyses predict

that fatigue crack growth arises naturally under cyclic loading conditions without

introducing additional parameters. The DD studies of fatigue in single-crystal materials

have shown the existence of a threshold, a Paris power-law regime, striations, scaling with

material properties and a short-crack regime [17,18,24].
Here, we use discrete dislocation plasticity to study monotonic and fatigue crack

growth in a situation where both microstructure and micron-scale cracks exist, thus

combining simultaneously elastic mismatch effects, interface effects, and small-crack

effects. Specifically, we analyze the growth of a crack from an initially-cracked elastic

particle into a ductile single crystal matrix. Plastic flow in the matrix arises from the

motion of discrete dislocations following a set of constitutive rules discussed below.

The fracture properties of the ductile material are embedded in a cohesive surface

constitutive relation that permits only straight crack growth [23]. A key aspect of the

formulation is that the plastic stress–strain response, the evolution of any dislocation

structure, and the crack initiation and growth in the ductile matrix, are outcomes of the

solution of the boundary value problem. We emphasize that the only distinction between

an analysis of monotonic crack growth and crack growth under cyclic loading conditions

is in the time dependence of the remote loading; the underlying material is identical. These

features are common to prior DD studies of fatigue. The aim of the analyses here is to

obtain insight into the effects of microstructural heterogeneity, through the presence of

a cracked particle, on fatigue crack growth behavior. We find that the presence of

a particle generally accelerates fatigue relative to the same crack in a single crystal, due to

both elastic mismatch and plastic constraint effects, as discussed subsequently.

2. Formulation

We consider a planar single crystal reinforced by an elastic particle containing an

initial crack, as sketched in Figure 2a. The formulation and numerical method follow

those in Cleveringa et al. [28] and Deshpande et al. [17,24], except that here the elastic

mismatch between the particle and the surrounding matrix gives rise to a polarization

stress term.
The crystal matrix is taken to be elastically isotropic with Young’s modulus

Em¼ 70GPa and Poisson’s ratio �m¼ 0.33, representative values for aluminium.

The crystal matrix has three slip systems, with slip planes at an angle �
(�), �¼ 1, 2, 3 to

the x1-axis, with �
(1)¼ 60�, �(2)¼ÿ60� and �

(3)¼ 0�, as shown in Figure 2a. Potential slip

planes are spaced by 100b where b is the Burgers vector, b¼ 0.25 nm. The particle is also

taken to be elastically isotropic with Young’s modulus Ep and Poisson’s ratio �p¼ 0.33.

Initially, the three slip systems are free of mobile dislocations, but dislocations are

nucleated from point sources, randomly distributed with a density of 20/mm2.
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The dislocation sources mimic Frank-Read sources by nucleating a dipole when the
Peach-Koehler force on the source exceeds the value �nucb during a period of time tnuc;
here �nuc¼ 20MPa and tnuc¼ 10 ns. The long-range elastic interactions between
dislocations are accounted for directly in the boundary value problem solution. Short-
range interactions enter through a set of constitutive rules, of the type suggested by
Kubin et al. [29], for dislocation glide, annihilation, and pinning by obstacles. The glide
speed is taken to be linearly related to the Peach-Koehler force with a drag coefficient
B¼ 10ÿ4Pa s, a representative value for several fcc crystals [30]. Dislocations of opposite
sign annihilate each other when they come within a critical distance of Le¼ 6b. There is
a random distribution of 50 point obstacles per mm2, which represent either small
precipitates on the slip plane or forest dislocations on out-of-plane slip systems. These
obstacles pin dislocations until the Peach-Koehler force attains the obstacle strength b�obs,
where �obs¼ 60MPa. For computational convenience, dislocation sources and obstacles
are restricted to a process window of dimensions Lm� hm around the cracked particle with
Lm¼ 50 mm and hm¼ 50 mm (see Figure 2a).

U

T1 = 0
T2 = Tn(∆n)

T1 = 0
T2 = 0

T1 = 0
T2 = Tn(∆n)

σmaxσmax

Lm

a

W

hm

hp

H

Lp
x2

x1

(a) (b)

time

s
2

2

smin

smax

(c)

Figure 2. (a) Sketch of the analyzed specimen with the imposed boundary conditions. (b) Schematic
of the cohesive relation employed. (c) Schematic of the applied stress versus time.
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The stress and displacement fields are obtained by superposition as described in [31].

The fields are written as

�ij ¼ ~�ij þ �̂ij , �ij ¼ ~�ij þ �̂ij , ui ¼ ~ui þ ûi, ð1Þ

where the (�)-fields are the singular fields associated with each individual dislocation. The

(�) fields give rise to tractions ~Ti and displacements ũi on the boundary of the body. The

(^) fields are the image fields that correct for the actual boundary conditions. The (^) fields

are non-singular in the region of interest and are obtained by a finite element solution to

a linear elastic boundary value problem.
The stress and strain fields are related by

�ij ¼
Lm
ijkl �kl in Vm

L
p
ijkl �kl in Vp,

(

ð2Þ

where Vm denotes the volume occupied by the matrix and Vp the volume occupied by the

particle. Throughout V¼VmþVp, the dislocation stress field ~�ij is related to the strain

field ~�kl by

~�ij ¼ Lm
ijkl ~�kl ð3Þ

and hence

�̂ij ¼
Lm
ijkl �̂kl in Vm

L
p
ijkl �̂kl þ ðLp

ijkl ÿ Lm
ijklÞ ~�kl in Vp:

(

ð4Þ

The polarization stress term, ðLp
ijkl ÿ Lm

ijklÞ ~�kl, vanishes for homogeneous elastic materials;

i.e. for L
p
ijkl � Lm

ijkl. Since ~�ij satisfies equilibrium throughout V, �̂ij satisfies

@�̂ij

@xj
¼ 0 ð5Þ

in V with the boundary conditions,

ûi ¼ u0i ÿ ~ui on Su, T̂i ¼ T0
i ÿ ~Ti on ST, ð6Þ

where Su being that part of the boundary on which displacements u0i are prescribed,

ST being that part of the boundary on which tractions T 0
i are prescribed, with Ti¼ �ijnj

and nj is the outward normal to the surface. Equations (5) and (6) together with

the constitutive relation Equation (4) give a boundary value problem for the (^)-fields.

The (^)-fields are smooth in V and a finite element method is used to obtain a solution.

The polarization stress in Equation (4) is computed in FEM as an expensive (since long-

range) body force.
The specific boundary value problem analyzed is sketched in Figure 2a. A rectangular

block of height 2H and width W contains a centrally-located particle of height 2hp and

width Lp. We use W¼ 100mm, H¼ 500 mm, and Lp¼ hp¼ a¼ 10 mm with the particle

betweenÿLp/2 and Lp/2 along the x1-direction and between 0 and hp along the direction x2.

Symmetry about x2¼ 0 is assumed so the region analyzed occupies ÿW/2� x1�W/2 and

0� x2�H. This block is subjected to tensile loading through a prescribed displacement rate
_UðtÞ on the top surface, which is taken to be shear free so that

_u02 ¼ _UðtÞ , _T1 ¼ 0 on x2 ¼ H, ð7Þ
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where (�) denotes time differentiation. The imposed stress � is then calculated as

� ¼ 1

W

Z W=2

ÿW=2

T2ðx1,H Þdx1 ð8Þ

and, under cyclic loading conditions, has the time variation sketched in Figure 2c and the
lateral sides are traction free.

In the calculations here, the particle is taken to be completely cracked so that the initial
crack length is a¼Lp. For a homogeneous elastic material, the applied stress � is related to
the mode-I stress intensity factor as [32],

K I ¼ �
ffiffiffiffiffiffiffiffiffiffi

�a=2
p

: ð9Þ

Corrections due to the finite ratio of a/W¼ 0.1 are negligible. We note that Equation (9)
does not give the local crack tip KI in an elastically inhomogeneous material, but we
nevertheless employ this definition to quantify the level of loading.

Crack growth is then modelled through a cohesive surface along x2¼ 0 in the matrix
(jx2j � a/2). Along the cohesive surface T1¼ 0 (from symmetry) while T2 has the universal
binding form [33]

T2ð�2Þ ¼ ÿ�coh
�2

�n
exp ÿ ð�2 ÿ �nÞ

�n

� �

, ð10Þ

where �2¼ 2u2(x1, 0), �coh is the normal cohesive strength, and �n is a characteristic length.
For a homogeneous elastic material and for monotonic loading, the work of separation is
given by �n¼ exp(1)�coh�n and is related to a reference stress intensity factor K0 by

K 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Em�n

1ÿ �2m

s

: ð11Þ

Under mode-I loading conditions, crack growth in an elastic solid initiates atKI/K0¼ 1 [13].
Unless otherwise specified the cohesive properties were taken as �coh¼ 0.70GPa and �n¼ 2b
giving a work of fracture �n� 1.0J/m2 and K0� 0.280MPa

ffiffiffiffi

m
p

. Associated with these
parameters is a characteristic cohesive zone size �c � Em�=�

2
coh, which is� 50 nm for the

parameters used here. Since �c/a� 1, the problems studied here are in the regime of small
scale yielding. In addition, the numerical mesh size near the crack tip needs to resolve the
length �c and so we use a mesh of size 17 nm.

A cohesive relation that accounts for the irreversibility of separation is modelled by
specifying unloading from and reloading to the monotonic cohesive function, as illustrated
in Figure 2b [34]. Unloading from point C takes place along path CD, with stiffness

@T2

@�2
¼ ÿ expð1Þ�coh

�n
: ð12Þ

During the reloading, the traction increases along DC and then follows the original
softening curve BCE. This is a phenomenological cohesive relation introduced to model
the effects of irreversibility arising from the formation of an oxide layer [34]. Under
continued cyclic loading conditions, the permanent opening �0 (see Figure 2b) grows, but
only up to a value �s¼ 4 nm which is a representative value for the oxide layer thickness
on aluminium under ambient conditions [35].
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3. Results

The presence of the elastic particle influences crack growth due to the effects of: (i) the
modulus mismatch on the driving force for crack growth; (ii) the change in the evolution of
plasticity in the vicinity of the crack tip; and (iii) the blocking of slip at the particle–matrix
interface. Here, these effects are investigated separately and sequentially by considering the
three cases summarized in Table 1: (i) material A, an initially-cracked single crystal, which
should thus show only small crack effects; (ii) material B, a particle with the same elastic
properties as the matrix, Ep¼Em and �p¼ �m but no dislocation activity in the particle,
which should show the effects of slip blocking only; and (iii) material C, a particle that is
elastically stiffer than the matrix, Ep¼ 5Em but with �p¼ �m, which should show the effects
of modulus mismatch and slip blocking acting together. To explore the influence of the
specific distribution of sources and obstacles on the response, calculations were carried out
for two sets of random distributions having the same densities of sources and obstacles
but different specific spatial positions and referred to as, for instance, Material B( j)

for (j¼ 0, 1).

3.1. Elastic response

To calibrate our subsequent results on crack growth into plastic materials, we first
investigate crack growth into an elastic matrix with no dislocations. These calculations
demonstrate the effects of modulus mismatch and crack size versus particle size on the
crack growth behavior, which will then be modified when plasticity in the matrix is
permitted. For large cracks a�Lp, the critical stress intensity for crack growth should be
independent of the particle properties.

Figure 3 shows the normalized stress intensity for crack growth (i.e. the so-called
R-curve) as a function of the crack size a for several values of the elastic modulus ratio.
For a modulus ratio of unity, the crack begins to grow at KI/K0� 0.935 but after a short
amount of growth reaches a value of KI/K0� 0.985. The onset at 0.935 is attributed to
truncating the cohesive relation behind the initial crack tip location and the saturation
value of 0.985, just slightly below 1.0, is due to mesh resolution in the cohesive zone.
For particle elastic moduli exceeding that of the matrix, crack growth occurs well below
KI/K0¼ 0.985, with the onset of fracture at KI/K0¼ 0.68 for Ep/Em¼ 2 and KI/K0¼ 0.48
for Ep/Em¼ 5. An uncracked high modulus particle would carry higher stresses than the
matrix and thus, when cracked, increases the local crack tip stress intensity K

ðlocÞ
I and

lowers the applied stress intensity KI needed to start fracture. The stress intensity for
fracture increases rapidly with increasing initial crack size, relative to the particle size, for
cracks up to �a/Lp¼ 1.2, after which there is a slower increase to the asymptotic value of
0.99. The effect of the cracked particle is thus most significant within �20% of the

Table 1. The three materials analyzed.

Material Ep/Em Particle

A 1 No
B 1 Yes
C 5 Yes
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particle diameter. Thus, elastic modulus mismatch alone provides a significant decrease in

fracture resistance and this will also manifest itself in the plastic response under monotonic

and cyclic loading.
The above results allow for a calculation of the local stress intensity factor K

ðlocÞ
I as

a function of the crack size a or crack extension �a as follows. The local stress intensity

factor can be written as K
ðlocÞ
I ¼ f ðaÞK I where f(a) is a function of crack length. For

a homogeneous elastic material in small scale yielding, f(a)¼ 1 and so fracture in the

single-crystal material occurs when K
ðlocÞ
I ¼ K I ¼ K Ic � 0:985K 0, independent of crack

length a. With elastic mismatch, the local stress intensity factor differs from the remote

stress intensity factor but at fracture K
ðlocÞ
Ic ¼ 0:985K 0 must still hold. Thus, the critical

applied stress intensity factor KIc(�a) shown in Figure 3 satisfies 0.985K0¼ f(�a)KIc(�a).

Solving for f(�a) and substituting, we find the normalized local stress intensity factor in

terms of the critical applied stress intensity factor as K
ðlocÞ
I =K 0 ¼ 0:985K I=K Icð�aÞ.

Figure 3 for KIc(�a) thus provides a master curve for relating the local and applied

intensity factors.

3.2. Monotonic loading

A uniform displacement rate _UðtÞ=H ¼ 100/s was imposed, chosen to reduce the

computing time required. Under monotonic loading, it was previously found that varying

the loading rate by two orders of magnitude did not qualitatively change the crack growth

behavior, although a strong tendency was found for increased plastic deformation at lower

loading rates [36].
The predicted KI/K0 versus crack extension are shown in Figure 4a, b. Here and

subsequently the crack tip location is taken to be the point along the cohesive surface

where �2¼ �n. In Figure 4a, b, �ar is the crack growth in the þx1-direction and �al is the

crack growth in the ÿx1-direction. In all three cases, the amount of crack growth is

Figure 3. Normalized stress intensity for the onset of fracture as a function of initial crack size a for
several values of the elastic modulus ratio.
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different for the two crack tips. One reason for this asymmetry is simply that the

distribution of sources and obstacles is not symmetric about x1¼ 0 and another is due to

the extreme sensitivity of the dislocation dynamics to small perturbations [37]. For the

single crystal, material A, crack growth only occurs in the ÿx1-direction over the loading

range shown. However, the values of KI/K0� 1.20 at which crack growth initiates at the

left crack tip are in good agreement with previous values [17]. For material B, where the

presence of the particle blocks slip but with no modulus mismatch, crack growth occurs at

both crack tips, initiating first on the left at KI/K0� 0.98 – 1.02 and subsequently on the

right at KI/K0� 1.11 – 1.26. In material C, where there is a modulus mismatch, the crack

growth initiation values are KI/K0� 0.63 and KI/K0� 0.55 – 0.72 for the left and right

crack tips, respectively. Thus, both the change in dislocation structure and the stress

concentration induced by an elastic mismatch between the particle and the matrix promote

the initiation of crack growth.
Normalizing the onset of crack growth in the plastic material by the value obtained in the

elastic material (Figure 3) helps to highlight the role of slip blocking by the particle.

For material A, the ratio is 1.2/0.94¼ 1.28, for material B the ratios for the left and right

crack tips are, on average, �1.06 and �1.30, respectively. For material C, the ratios for

the left and right crack tips are, on average, both about 1.31. These results suggest that

elastic stress concentrations dominate the material response, with slip blocking

playing a lesser role. In addition, slip blocking appears more important in driving crack

growth for thematched-modulus particle as compared to the higher modulus particle, which

responds similarly to the single-crystal material when the elastic stress concentration is

normalized out.
The dislocation distributions for materials A(0), B(0) and C(0) at KI/K0¼ 1.07 are shown

in Figure 5, along with contours of the opening stress �22. In Figure 5a no particle is

present, but for comparison purposes the region occupied by the particle in materials B

and C is marked by dashed lines. The stress above the crack is relaxed and dislocations are

|∆al| (µm) |∆al| (µm)

∆ar (µm)

K
I/
K

0

K
I/
K

0

0 0.05 0.1 0.15 0.2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

∆ar (µm)

0

(b)(a)

0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.5

1

1.5

material A(0)

material B(0)
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material C(1)
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0 0.05 0.1 0.15 0.2 0.25 0.3 
0

0.5
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Figure 4. Normalized stress intensity KI/K0 versus crack extension under monotonic loading. (a)
Materials A(0), B(0) and C(0); (b) Materials A(1), B(1) and C(1). The superscripts (0) and (1) refer to
realizations 1 and 2, respectively.
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Figure 5. (Color online). Contours of normalized normal stress, �22/�nuc, and dislocation
distributions under monotonic loading at KI/K0¼ 1.07. (a) Material A(0) (b) Material B(0) (c)
Material C(0). The superscript (0) refers to realization 1.
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present in the region above the crack. The difference between the stress distribution and

dislocation structure at the two crack tips is evident. Evidence for the sector structure of

the stress field as given by the continuum slip solution of Rice [38] can be seen. When

a particle is present and dislocation glide is blocked, Figure 5b, the same stress distribution

is obtained as in the single crystal, albeit with slightly higher stress gradients in the matrix

near the two crack tips. With an elastic mismatch between the particle and the matrix,

Figure 5c, high stresses develop along the particle–matrix interface. In this case, the sector

stress field structure is lost and the stress concentration in the particle increases and the

stress gradients in the matrix near the two crack tips is greater. Moreover, with the elastic

mismatch, more dislocations accumulate at the particle–matrix interface than when there

is no elastic mismatch.

3.3. Fatigue loading

The same three sets of material parameters are used in the cyclic loading calculations as in

the monotonic loading calculations in Section 3.2. The only difference is in the time

dependence of the applied displacement U(t), which has the form sketched in Figure 2c.

All calculations are carried out with a displacement rate _U0 ¼ 100 /s and thus the variation

of the cyclic loading amplitude is obtained by increasing or decreasing the frequency of

loading between 3.3MHz and 8MHz to obtain the desired range of cyclic loading

amplitudes. The applied loading is characterized by the stress intensity factor KI, with the

stress varied between �min and �max and the corresponding stress intensity factor range

�KI¼KmaxÿKmin. The load ratio, R¼ �min/�max is fixed at 0.3.
The DD calculations show fatigue crack growth above a threshold value of �K.

The crack growth shows a range of behaviors, and we first comment qualitatively. Figure 6

shows the computed crack advance, �a, versus the number of cycles for �KI near the

N

|∆
a

l|;
 ∆

a
r 
(µ

m
)

10 20 30 40 
0

0.05

0.1

0.15

0.2

material B(0)

material C(0)

material A(0)

Figure 6. Crack advance versus number of cycles. The filled symbols are related to the left crack tip
and unfilled symbols are related to the right crack tip. �KI/K0¼ 0.775, 0.595 and 0.395 for materials
A(0), B(0) and C(0), respectively. The superscript (0) refers to realization 1.
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fatigue threshold found for each material. As for monotonic loading, the crack advance is

not symmetric, but it differs from the monotonic loading case. Although crack growth to

the left occurs at lower KI values under monotonic loading, under cyclic loading no crack

advance occurs to the left in material A(0) while some growth does occur in materials B(0)

and C(0), but stopping after eight cycles and �alj � 0.05 mm in material B(0) and after 12

cycles and �alj � 0.10mm in material C(0). Crack growth to the right, more difficult under

monotonic loading, occurs more readily under cyclic loading. In material A(0), j�arj begins
to increase after 10 cycles at a nearly constant rate. In material B(0), j�arj begins to

increase after seven cycles at a slightly faster rate than for material A(0), slowing to a lower

rate after 10 cycles. In material C(0), j�arj shows two distinct regimes: (i) during the first 18

cycles, j�arj increases at a rate close to 0.008 mm/cycle; and (ii) between cycles 19 and 40,

j�arj the rate decreases to a very low rate of about 10ÿ4
mm/cycle.

The normalized opening stress, �22/�nuc, and dislocation distribution are shown in

Figure 7 in a region around the cracked particle. For material A(0), dislocations can glide

into the material above the crack and relax the stress field. For materials B(0) and C(0),

dislocation glide is blocked in the particle, which gives rise, even with no elastic mismatch,

to an increased stress concentration above the crack tip that increases with increasing

particle modulus. The different stress and dislocation distributions in the vicinity of the left

and right crack tips, which are largely due to the different source and obstacle locations,

can also be seen in Figure 7. In comparison to Figure 5, the dislocation distribution under

cyclic loading is more concentrated along a 60� slip plane near the right crack tip and

along a 120� slip plane near the left crack tip.

3.4. Fatigue crack growth rate

The crack growth rate log(da/dN) versus the normalized loading log(�KI/K0) for R¼ 0.3 is

shown in Figure 8a for materials A( j), B( j) and C( j) with j¼ 0, 1, for crack growth on the

right side. The crack growth rate is an average of the crack advance over the number of

cycles computed. For materials A( j) and B( j) the average is over at least 10 cycles for �KI

values above the threshold and over 20 cycles for near-threshold values of �KI. As noted

above, for material C, the crack growth rates drop dramatically after crack extension

exceeds a critical amount �acrit and so the values of da/dN in Figure 8a for materials C(0)

and C(1) are averages over the number of cycles needed for the crack to grow to �acrit.

The fatigue threshold is estimated using the procedure in Deshpande et al. [24] wherein

calculations are carried out at decreasing values of �KI until the crack growth rate da/dN

is less than or equal to 10ÿ2
mm/cycle (10 times larger than used in [24]). The fatigue

threshold is then taken as the average of the last two values of the applied �KI. Above the

threshold, the crack growth rates are fit to a Paris power-law [39] of the form

da

dN
¼ CI

�

�K I

K 0

�m

, ð13Þ

where m is the Paris exponent and CI a constant. The fatigue threshold is reduced in the

presence of a particle, and further reduced with an increased modulus mismatch.

The thresholds are � 0.78K0 for material A,� 0.59K0 for material B, and �0.40K0 for

material C, with only a small difference seen for the two distributions of dislocation

sources and obstacles used in the calculations. The Paris exponent decreases when
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Figure 7. Contours of normalized normal stress, �22/�nuc, and dislocation distributions.
(a) Material A(0) with �KI/K0¼ 0.775. (b) Material B(0) with �KI/K0¼ 0.595. (c) Material C(0)

with �KI/K0¼ 0.395.
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a particle is present, and furthermore decreases with increasing mismatch, as indicated

by Figure 8a. There is a somewhat greater sensitivity of the crack growth in the power-law

regime to the specific realization which, although not large in magnitude, leads to

a significant variation in the Paris exponent m. Keeping in mind that the crack in material

C stops after a critical distance, these results show that a particle reduces the threshold for

fatigue but decreases the rate of the crack growth rate.
We summarize salient values for the various material responses in Table 2. For cyclic

loading at the fatigue threshold, the maximum stress intensity factor K th
max is smaller than

the stress intensity factor KI obtained for the monotonic loading, and larger than the

elastic value K elastic
I for Materials A and C but smaller than K elastic

I for Material B.

The dislocations thus shield the crack tip under monotonic loading, but the dislocation

structures formed under cyclic loading provide less shielding. The net shielding remains

positive for Materials A and C, because the threshold remains above K elastic
I , but is actually

negative for Material B (anti-shielding). Net anti-shielding in fatigue has also been seen by

Pippan and Weinert [40].
We now evaluate the fatigue results to attempt a decoupling of elastic and plastic

effects on the fatigue crack growth. To do so, we first normalize the fatigue crack growth

data against the critical stress intensity for crack growth in the elastic matrix problem

(e.g. Figure 3), �K I=K
elastic
I , as shown in Figure 8b. Since K elastic

I � K 0, the results for

materials A and B are changed only slightly. However, the da/dN versus �KI curves for

material C( j) shift upward substantially, with the normalized fatigue threshold

�K th
I =K

elastic
I of material C( j) being comparable to that of material A( j). These results

again indicate that slip blocking gives an anti-shielding effect for both monotonic and

fatigue crack growth and that elastic mismatch increases the local stress intensity at the

crack tip but the dislocation structures formed by the slip blocking and image stress fields

cause shielding of the crack tip under both monotonic and cyclic loading conditions.

∆KI/K0

d
a
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N
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m
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)
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B(0): m=5.2
B(1): m=4.8
C(0): m=3.8
C(1): m=2.9
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material A(0,1)
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1

Figure 8. (a) Cyclic crack growth rate versus �KI/K0 for the mode I cyclic loading. For materials
A0,1 and B0,1, the crack growth rate represents an average of the crack advance over 10 and 20 cycles
for the low and high value of �KI/K0, respectively. For materials C0,1, the crack growth rate
represents an average of the crack advance over the number of cycles needed for the crack to reach
the critical distance. (b) Cyclic crack growth rate versus �K I=K

elastic
I for the mode I cyclic loading.

Filled symbols: material A(0), B(0), C(0); open symbols: material A(1), B(1), C(1).
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Recall that crack growth in Materials B, C can be abruptly halted after growth out to
a critical distance. We now examine this further. The crack growth rate as a function of the
crack advance is plotted in Figure 9a for material B(0), in Figure 9b for material C(0) for
values of the cyclic amplitude around the fatigue threshold, and in Figure 9c for materials

Table 2. Numerical results for crack growth from a cracked particle, under monotonic loading for
an elastic matrix and elastic–plastic one and under cyclic loading. The ‘index’ j refers to the
realization number.

Monotonic Cyclic

Materials K elastic
I =K 0 KI/K0 �K th

I =K 0 K th
max=K 0 m

A( j) 0.94 �1.22 0.78 1.10 6–8
B( j) 0.94 1.03–1.26 0.59 0.83 4–6
C( j) 0.48 0.62–0.72 0.40 0.57 2–4

∆a (µm)

d
a
/d

N
 (
µ

m
/c

y
c
le

)

0.1 0.2 0.3
10−5

10−4

10−3

10−2

(a) (b)

(c)
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Figure 9. Crack growth rate versus crack advance for (a) Material B(0) and (b) Material C(0) around
the fatigue threshold, and for (c) materials C(1) (filled symbols) and C(0) (unfilled symbols) for several
values of �KI in the Paris regime.
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C(0) and C(1) for several values of the cyclic amplitude �KI in the Paris power-law regime.

Below the fatigue threshold, the crack growth rate versus crack advance is similar in

materials B(0) and C(0) and, as noted previously, drops dramatically after a critical crack

advance. For material B(0), �acrit¼ 0.033 mm, while it is much larger at �acrit¼ 0.15 mm in

material C(0) and �acrit¼ 0.40 mm in material C(1), showing sensitivity to the source/

obstacle distributions. Above the fatigue threshold, the crack growth is qualitatively

different, still dropping dramatically in material C(0) after a critical distance while being

nearly constant in material B(0).
We believe the reason that cracks stop growing is that the local stress intensity amplitude

�K
ðlocÞ
I driving growth is decreasing with crack growth due to either changes in slip blocking

or elastic mismatch effects, or both, and can decrease below a threshold value �K
ðlocÞth
I .

Since for larger crack growth, we expect that the crack growth rates for Materials A, B, and

C will converge, the existence of a unique threshold is not unreasonable, and so we consider

�K
ðlocÞth
I to be amaterial parameter.We envision that the�K

ðlocÞ
I is increased, relative to the

applied�KI, by (i) a slip blocking contribution�K sb
I and (ii) the elastic stress concentration

factor found previously for elastic fracture, 0.985�KI/�KIc(�a), so that

�K
ðlocÞ
I ¼ 0:985K 0�K I

�K Icð�aÞ þ�K sb
I : ð14Þ

With a threshold �K
ðlocÞth
I , a crack loaded at �KI will halt after an amount of crack

growth �a satisfying

�K
ðlocÞth
I ¼ 0:985K 0�K I=�K Icð�aÞ þ�K sb

I :

For material A, the local and applied stress intensity amplitudes are equal, �K
ðlocÞ
I ¼ �K I,

and so we can immediately estimate �K
ðlocÞth
I ¼ 0:78K 0. Then, for material B with no

elastic stress concentration, we have �K
ðlocÞth
I ¼ �K th

I þ�K sb
I and so can estimate

�K sb
I ¼ �K

ðlocÞth
I ÿ�K th

I ¼ 0:19K 0 since �K th
I ¼ 0:59K 0 for Material B. For material C,

both slip blocking and an elastic stress concentration play a role and lead to crack growth

at lower applied loads but with halting of the crack after larger amounts of growth.

For material C we account for the elastic stress concentration through the factor f(a) and

so can estimate the slip blocking as �K sb
I ¼ �K

ðlocÞth
I ÿ 0:985K 0�K I=�K Icð�aÞ using the

measured values of �KI and �a at which cracks stop. Table 3 summarizes the results of

this analysis on Materials A, B, C. The estimated slip blocking for Material C is generally

smaller than for Material B and decreases at higher applied �KI. In one case, the estimated

Table 3. Summary of the numerical analysis. Lines 4–7 refer to materials C (0,1) in the Paris
power-law regime as given in Figure 9c.

Material �KI/K0 �a (mm) KIc/K0 �K
ðlocÞth
I =K 0 �K

ðsbÞ
I =K 0

A 0.78 — 0.985 0.78 —
B 0.59 — 0.985 (0.78) 0.19
C 0.428 0.15 0.63 (0.78) 0.11

0.476 0.4 0.72 (0.78) 0.13
0.478 0.16 0.635 (0.78) 0.04
0.571 0.18 0.64 (0.78) ÿ0.10
0.580 0.4 0.72 (0.78) ÿ0.01
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slip blocking becomes negative. This suggests that the slip blocking effect decreases as the

crack grows more than a few tenths of a micron from the particle and/or is influenced by

image stresses due to the particle–matrix elastic modulus mismatch. This limited influence

of slip blocking is consistent with our discussion above for monotonic loading.
Overall, our results are reasonably interpreted through the consideration of a �K loc

I

that is affected by:

(i) slip blocking, which gives an anti-shielding effect for small crack extension;
(ii) elastic mismatch, which gives a stress concentration that decreases with crack

growth;
(iii) interactions between the above two factors, which influences the dislocation

structure that develops, and is reflected in fluctuations of the estimates above.

The first two factors act to reduce the value of the applied �KI necessary to initiate and

continue fatigue crack growth, relative to a single crystal material.

4. Discussion

A number of prior studies exist on the role of particles in modifying fatigue crack

growth in metals. Based on a continuum crystal plasticity model, Bruzzi et al. [41]

estimated the state of stress within the matrix and incorporated the stress gradient

along a predefined crack path into investigation of the effect of reinforcing particles on

a small fatigue crack [42]. The existence of such a gradient of stress is important

because it increases the driving force at the crack tip and thus accelerates the crack

growth close to the interface [12,43]. We see the same effect here when there is elastic

mismatch, while slip blocking may add an additional contribution. Jiang et al. [44]

experimentally studied fatigue crack propagation normal to an elastically-matched but

plastically mismatched bimetallic interface under a four-point bending condition. They

observed fatigue crack acceleration over a few tenth of micrometers beyond the

interface when the crack propagated from a hard (high yield stress) phase into a soft

(lower yield stress) phase, followed by a reduced growth. A similar result was obtained

numerically by Wang and Siegmund [12] using a cohesive framework to model crack

propagation through an elastically-matched, plastically-mismatched interface. These

results are qualitatively similar to our results for material B, except that our hard phase

is strictly elastic. In contrast to the continuum framework, however, we observe fatigue

with maximum loads below the elastic fracture limit, indicating short-crack and discrete

plasticity effects. We also observe stochastic effects such as asymmetry in the crack

growth, and a sensitivity of the growth rates and loads to the distribution of obstacles

and sources.
The fatigue threshold and the crack growth rate characterize the propagation of

a crack during a fatigue experiment. From the literature, it appears that the only

common feature is that fatigue crack growth behavior is different for single and

multiphase materials, and that an increase or a decrease of the fatigue threshold is

strongly dependent on the material properties [45]. Tanaka et al. [46] present results

showing that �K th
I tends to be larger for reinforced as compared to unreinforced alloys

at the maximum tensile stress level. Such an increase of the fatigue threshold in

presence of reinforcements is also observed by Milan and Bowen [47] in the case of an
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Al matrix reinforced by different volume fraction of SiC particles. On the other hand,

for 16% and 21% Al2O3 particle reinforced aluminium alloys, Pippan and Weinert [40]

conclude experimentally that the fatigue threshold of the particle reinforced alloy is

smaller than the one obtained for the unreinforced material, in agreement with this

study and with the trend in [40]. Literature data further suggest that the presence of

reinforcements tends to increase the crack growth resistance (inverse of the Paris

exponent) as compared non-reinforced material. Chen et al. [48] concluded that the

crack growth rate decreases with increasing particle size. Milan and Bowen [47]

characterized separately the crack growth resistance of unreinforced and reinforced

aluminium alloys, concluding that the addition of SiC particles increases the fatigue

crack growth resistance at near threshold and Paris power-law regimes. This latter

effect of the reinforcement on the crack growth resistance is reproduced by the

calculations presented in this study. The reduced Paris exponent may be attributable to

the higher dislocation density close to the crack and particle in Material C as compared

to Material B (Figure 7b, c) because an increase in plastic dissipation tends to decrease

the Paris exponent in ductile materials [13].

5. Conclusions

Crack growth from small initially-cracked elastic particles into a ductile metal material has

been analysed using discrete dislocation plasticity to characterize the inelastic deformation

in the matrix at micron scales and using a cohesive model for fracture. Analysis of crack

growth under fatigue loading reveals the following general features:

. The particle reduces the threshold value of �K and the Paris power-law exponent,

relative to a single-crystal material.
. Slip blocking at the particle–matrix interface gives rise to a dislocation structure

with increased anti-shielding relative to the single-crystal material.
. Stress concentrations due to elastic mismatch increase the local stress intensity

factor further and thus reduce the applied stress intensity factor at which crack

growth is observed.
. The elastic stress concentrations decay with increasing crack length, leading to

halting of crack growth near and above the threshold value of �K after some

critical distance of crack growth.
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