72 research outputs found
Smoking, Green Tea Consumption, Genetic Polymorphisms in the Insulin-Like Growth Factors and Lung Cancer Risk
Insulin-like growth factors (IGFs) are mediators of growth hormones; they have an influence on cell proliferation and differentiation. In addition, IGF-binding protein (IGFBP)-3 could suppress the mitogenic action of IGFs. Interestingly, tea polyphenols could substantially reduce IGF1 and increase IGFBP3. In this study, we evaluated the effects of smoking, green tea consumption, as well as IGF1, IGF2, and IGFBP3 polymorphisms, on lung cancer risk. Questionnaires were administered to obtain the subjects' characteristics, including smoking habits and green tea consumption from 170 primary lung cancer cases and 340 healthy controls. Genotypes for IGF1, IGF2, and IGFBP3 were identified by polymerase chain reaction. Lung cancer cases had a higher proportion of smoking, green tea consumption of less than one cup per day, exposure to cooking fumes, and family history of lung cancer than controls. After adjusting the confounding effect, an elevated risk was observed in smokers who never drank green tea, as compared to smokers who drank green tea more than one cup per day (odds ratio (OR) = 13.16, 95% confidence interval (CI) = 2.96–58.51). Interaction between smoking and green tea consumption on lung cancer risk was also observed. Among green tea drinkers who drank more than one cup per day, IGF1 (CA)19/(CA)19 and (CA)19/X genotypes carriers had a significantly reduced risk of lung cancer (OR = 0.06, 95% CI = 0.01–0.44) compared with IGF1 X/X carriers. Smoking-induced pulmonary carcinogenesis could be modulated by green tea consumption and their growth factor environment
Dynamics of Molecular Evolution and Phylogeography of Barley yellow dwarf virus-PAV
Barley yellow dwarf virus (BYDV) species PAV occurs frequently in irrigated wheat fields worldwide and can be efficiently transmitted by aphids. Isolates of BYDV-PAV from different countries show great divergence both in genomic sequences and pathogenicity. Despite its economical importance, the genetic structure of natural BYDV-PAV populations, as well as of the mechanisms maintaining its high diversity, remain poorly explored. In this study, we investigate the dynamics of BYDV-PAV genome evolution utilizing time-structured data sets of complete genomic sequences from 58 isolates from different hosts obtained worldwide. First, we observed that BYDV-PAV exhibits a high frequency of homologous recombination. Second, our analysis revealed that BYDV-PAV genome evolves under purifying selection and at a substitution rate similar to other RNA viruses (3.158×10−4 nucleotide substitutions/site/year). Phylogeography analyses show that the diversification of BYDV-PAV can be explained by local geographic adaptation as well as by host-driven adaptation. These results increase our understanding of the diversity, molecular evolutionary characteristics and epidemiological properties of an economically important plant RNA virus
New Strategies in Modeling Electronic Structures and Properties with Applications to Actinides
This chapter discusses contemporary quantum chemical methods and provides
general insights into modern electronic structure theory with a focus on
heavy-element-containing compounds. We first give a short overview of
relativistic Hamiltonians that are frequently applied to account for
relativistic effects. Then, we scrutinize various quantum chemistry methods
that approximate the -electron wave function. In this respect, we will
review the most popular single- and multi-reference approaches that have been
developed to model the multi-reference nature of heavy element compounds and
their ground- and excited-state electronic structures. Specifically, we
introduce various flavors of post-Hartree--Fock methods and optimization
schemes like the complete active space self-consistent field method, the
configuration interaction approach, the Fock-space coupled cluster model, the
pair-coupled cluster doubles ansatz, also known as the antisymmetric product of
1 reference orbital geminal, and the density matrix renormalization group
algorithm. Furthermore, we will illustrate how concepts of quantum information
theory provide us with a qualitative understanding of complex electronic
structures using the picture of interacting orbitals. While modern quantum
chemistry facilitates a quantitative description of atoms and molecules as well
as their properties, concepts of quantum information theory offer new
strategies for a qualitative interpretation that can shed new light onto the
chemistry of complex molecular compounds.Comment: 43 pages, 3 figures, Version of Recor
Song plasticity over time and vocal learning in clay-colored thrushes
Songbirds have been traditionally classified into close-ended or open-ended learning species according to the length of the sensitive period during which birds are able to memorize new vocalizations. Closed-ended learners are generally not capable of changing their song after the first year of life, while open-ended learners show song plasticity as adults. A few Turdus species have been sug- gested to be open-ended learners, but no long-term study has been conducted to investigate their song plasticity over time. We analyzed the songs of clay-colored thrushes, T. grayi, over four successive breeding seasons to assess song plasticity in their syllable repertoires within and between breeding seasons. A total of 16,262 syllables were classi- fied through visual inspection of spectrograms and multi- dimensional scaling analysis based on spectrogram correlations. On average, 563 ± 153 (SD) syllables per male per breeding season were analyzed. Male repertoire size was 9–20 syllable types. Males were capable of modifying their syllable repertoire between the initial and final periods of the breeding season. Song plasticity within breeding seasons may be associated with imitation between neighboring males, suggesting song learning in males that were C2 years old. This short-term plasticity is not enough, however, to explain the high proportion of change (mean = 65 % syllable types) in repertoire composition between breeding seasons in adult males. Song plasticity resulting from annual changes in repertoire composition could be explained by open-ended learning, but another mechanism, extended memory and re-expression, could also explain long-term plasticity. Experimental studies controlling the acoustic environment are needed to determine which mechanism is responsible for such a high level of song plasticity.UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Biologí
Heterochromatin and the molecular mechanisms of 'parent-of-origin' effects in animals.
Twenty five years ago it was proposed that conserved components of constitutive heterochromatin assemble heterochromatinlike complexes in euchromatin and this could provide a general mechanism for regulating heritable (cell-to-cell) changes in gene expressibility. As a special case, differences in the assembly of heterochromatin-like complexes on homologous chromosomes might also regulate the parent-of-origin-dependent gene expression observed in placental mammals. Here, the progress made in the intervening period with emphasis on the role of heterochromatin and heterochromatin-like complexes in parent-of-origin effects in animals is reviewed
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
Controls on explosive-effusive volcanic eruption styles
One of the biggest challenges in volcanic hazard assessment is to understand how and why eruptive style changes within the same eruptive period or even from one eruption to the next at a given volcano. This review evaluates the competing processes that lead to explosive and effusive eruptions of silicic magmas. Eruptive style depends on a set of feedbacks involving interrelated magmatic properties and processes. Foremost of these are magma viscosity, gas loss, and external properties such as conduit geometry. Ultimately, these parameters control the speed at which magmas ascend, decompress and outgas en route to the surface, and thus determine eruptive style and evolution
- …