303 research outputs found
Does black-hole growth depend on the cosmic environment?
It is well known that environment affects galaxy evolution, which is broadly related to supermassive black hole (SMBH) growth. We investigate whether SMBH evolution also depends on host-galaxy local (sub-Mpc) and global (≈1–10 Mpc) environment. We construct the surface-density field (local environment) and cosmic web (global environment) in the Cosmic Evolution Survey (COSMOS) field at z = 0.3–3.0. The environments in COSMOS range from the field to clusters (Mhalo ≲ 1014 M⊙), covering the environments where ≈99 per cent of galaxies in the Universe reside. We measure sample-averaged SMBH accretion rate ( BHAR¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ ) from X-ray observations, and study its dependence on overdensity and cosmic-web environment at different redshifts while controlling for galaxy stellar mass (M⋆). Our results show that BHAR¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ does not significantly depend on overdensity or cosmic-web environment once M⋆ is controlled, indicating that environment-related physical mechanisms (e.g. tidal interaction and ram-pressure stripping) might not significantly affect SMBH growth. We find that BHAR¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ is strongly related to host-galaxy M⋆, regardless of environment
A first-principles study of MgB2 (0001) surfaces
We report self-consistent {\it ab initio} calculations of structural and
electronic properties for the B- and Mg-terminated MgB (0001) surfaces.
We employ ultra-soft pseudopotentials and plane wave basis sets within the
generalized gradient approximation. The surface relaxations are found to be
small for both B- and Mg-terminated surfaces. For the B-terminated surface,
both B and surface bands appear, while only one B
surface band exists near the Fermi level for the Mg-terminated surface. The
superconductivity of the MgB surfaces is discussed. The work function is
predicted to be 5.95 and 4.25 eV for the B- and Mg-terminated surfaces
respectively. The simulated scanning tunneling microscopy images of the
surfaces are not sensitive to the sign and value of the bias voltages, but
depend strongly on the tip-sample distance. An image reversal is predicted for
the Mg-terminated surface.Comment: 3 pages, 4 figures, Revte
Suppression of Superconducting Critical Current Density by Small Flux Jumps in Thin Films
By doing magnetization measurements during magnetic field sweeps on thin
films of the new superconductor , it is found that in a low temperature
and low field region small flux jumps are taking place. This effect strongly
suppresses the central magnetization peak leading to reduced nominal
superconducting critical current density at low temperatures. A borderline for
this effect to occur is determined on the field-temperature (H-T) phase
diagram. It is suggested that the small size of the flux jumps in films is due
to the higher density of small defects and the relatively easy thermal
diffusion in thin films in comparison with bulk samples.Comment: 7 figures Phys. Rev. B accepted scheduled issue: 01 Feb 200
Searching for fast extragalactic X-ray transients in Chandra surveys
High Energy Astrophysic
Black Hole Growth Is Mainly Linked to Host-galaxy Stellar Mass Rather Than Star Formation Rate
We investigate the dependence of black-hole accretion rate (BHAR) on host-galaxy star formation rate (SFR) and stellar mass (M∗) in the CANDELS/GOODS-South field in the redshift range of 0.5≤z<2.0. Our sample consists of ≈18000 galaxies, allowing us to probe galaxies with 0.1≲SFR≲100 M⊙ yr−1 and/or 108≲M∗≲1011 M⊙. We use sample-mean BHAR to approximate long-term average BHAR. Our sample-mean BHARs are derived from the Chandra Deep Field-South 7 Ms observations, while the SFRs and M∗ have been estimated by the CANDELS team through SED fitting. The average BHAR is correlated positively with both SFR and M∗, and the BHAR-SFR and BHAR-M∗ relations can both be described acceptably by linear models with a slope of unity. However, BHAR appears to be correlated more strongly with M∗ than SFR. This result indicates that M∗ is the primary host-galaxy property related to black-hole growth, and the apparent BHAR-SFR relation is largely a secondary effect due to the star-forming main sequence. Among our sources, massive galaxies (M∗≳1010M⊙) have significantly higher BHAR/SFR ratios than less-massive galaxies, indicating the former have higher black-hole fueling efficiency and/or higher SMBH occupation fraction than the latter. Our results can naturally explain the observed proportionality between MBH and M∗ for local giant ellipticals, and suggest their MBH/M∗ is higher than that of local star-forming galaxies. Among local star-forming galaxies, massive systems might have higher MBH/M∗ compared to dwarfs
Inverse problems for Sturm-Liouville equations with boundary conditions linearly dependent on the spectral parameter from partial information
[[abstract]]Abstract.In this paper, we study the inverse spectral problems for Sturm–Liouville equations with boundary conditions linearly dependent on the spectral parameter and show that the potential of such problem can be uniquely determined from partial information on the potential and parts of two spectra, or alternatively, from partial information on the potential and a subset of pairs of eigenvalues and the normalization constants of the corresponding eigenvalues.[[notice]]補正完畢[[journaltype]]國外[[incitationindex]]SCI[[ispeerreviewed]]Y[[booktype]]紙本[[booktype]]電子版[[countrycodes]]DE
Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope
Nearby clusters and groups of galaxies are potentially bright sources of
high-energy gamma-ray emission resulting from the pair-annihilation of dark
matter particles. However, no significant gamma-ray emission has been detected
so far from clusters in the first 11 months of observations with the Fermi
Large Area Telescope. We interpret this non-detection in terms of constraints
on dark matter particle properties. In particular for leptonic annihilation
final states and particle masses greater than ~200 GeV, gamma-ray emission from
inverse Compton scattering of CMB photons is expected to dominate the dark
matter annihilation signal from clusters, and our gamma-ray limits exclude
large regions of the parameter space that would give a good fit to the recent
anomalous Pamela and Fermi-LAT electron-positron measurements. We also present
constraints on the annihilation of more standard dark matter candidates, such
as the lightest neutralino of supersymmetric models. The constraints are
particularly strong when including the fact that clusters are known to contain
substructure at least on galaxy scales, increasing the expected gamma-ray flux
by a factor of ~5 over a smooth-halo assumption. We also explore the effect of
uncertainties in cluster dark matter density profiles, finding a systematic
uncertainty in the constraints of roughly a factor of two, but similar overall
conclusions. In this work, we focus on deriving limits on dark matter models; a
more general consideration of the Fermi-LAT data on clusters and clusters as
gamma-ray sources is forthcoming.Comment: accepted to JCAP, Corresponding authors: T.E. Jeltema and S. Profumo,
minor revisions to be consistent with accepted versio
Observation of hard scattering in photoproduction events with a large rapidity gap at HERA
Events with a large rapidity gap and total transverse energy greater than 5
GeV have been observed in quasi-real photoproduction at HERA with the ZEUS
detector. The distribution of these events as a function of the
centre of mass energy is consistent with diffractive scattering. For total
transverse energies above 12 GeV, the hadronic final states show predominantly
a two-jet structure with each jet having a transverse energy greater than 4
GeV. For the two-jet events, little energy flow is found outside the jets. This
observation is consistent with the hard scattering of a quasi-real photon with
a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil
Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events
The - oscillation frequency has been measured with a sample of
23 million \B\bar B pairs collected with the BABAR detector at the PEP-II
asymmetric B Factory at SLAC. In this sample, we select events in which both B
mesons decay semileptonically and use the charge of the leptons to identify the
flavor of each B meson. A simultaneous fit to the decay time difference
distributions for opposite- and same-sign dilepton events gives ps.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
Spatiotemporal dynamics of hemorrhagic fever with renal syndrome, Beijing, People's Republic of Chin
We used geographic information systems to characterize the dynamic change in spatial distribution of hemorrhagic fever with renal syndrome (HFRS) in Beijing, People's Republic of China. The seasonal variation in its incidence was observed by creating an epidemic curve. HFRS was associated with developed land, orchards, and rice paddies
- …