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Abstract. In this paper, we study the inverse spectral problems for Sturm–
Liouville equations with boundary conditions linearly dependent on the
spectral parameter and show that the potential of such problem can be
uniquely determined from partial information on the potential and parts
of two spectra, or alternatively, from partial information on the potential
and a subset of pairs of eigenvalues and the normalization constants of
the corresponding eigenvalues.
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1. Introduction

Consider the following boundary value problem L := L(q, U0, U1) of the form

Ly = −y′′ + q(x)y = λy, 0 < x < 1 (1.1)

with the boundary conditions

U0(y) := (λ − h1)y′(0, λ) + (h2λ − h3)y(0, λ) = 0, (1.2)
U1(y) := (λ − H1)y′(1, λ) − (H2λ − H3)y(1, λ) = 0, (1.3)

where q is a real-valued function and q ∈ L2[0, 1], hl,Hl∈ R, l = 1, 2, 3, such
that

r0 = h3 − h1h2 > 0 and r1 = H1H2 − H3 > 0.
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Sturm–Liouville equations with boundary conditions linearly or nonlin-
early dependent on the spectral parameter were addressed by many authors
(see [1–8]). Such problems often arise from physical problems, for example,
vibration of a string, quantum mechanics and geophysics. Binding et al. [2]
discussed the boundary value problem L and obtained oscillation and com-
parison results as well as the asymptotic estimates of eigenvalues, which can
be considered as extension of Fulton’s results [1]. Chernozhukova and Freiling
[5] explored the inverse problem for Sturm–Liouville equations with bound-
ary conditions polynomially dependent on the spectral parameter and showed
that if coefficient functions R0k(λ), k = 0, 1, of the boundary condition are
known a priori, then the potential q and coefficient functions R1k(λ) of the
boundary condition can be uniquely determined by the Weyl function, where
Rξk(λ) = Σrξk

j=0aξkjλ
rξk−j , rξ1 = rξ0 ≥ 0, aξ10 = 1, ξ, k = 0, 1, are arbitrary

polynomials of degree rξ1 with complex coefficients such that Rξ1(λ) and
Rξ0(λ) have no common zeros. Freiling and Yurko [6] studied three inverse
problems for Sturm–Liouville equations with boundary conditions polynomi-
ally dependent on the spectral parameter from Weyl function, or from discrete
spectral data or from two spectra and provided procedures for reconstructing
this differential operator from the above spectral data, respectively.

Numerous research results for Eq. (1.1) with Robin boundary conditions
have been established by renowned mathematicians, notably, Borg [9] and
Levinson [10], respectively showed that two spectra {λn, μn} uniquely deter-
mined the potential q and coefficients h,H ∈ R of the boundary conditions.
Hochstadt and Lieberman [11] initiated the study of the so-called “half inverse
problem“ for Eq. (1.1) with Robin boundary conditions, they proved that if
coefficients h,H of the boundary conditions are given a priori and q is pre-
scribed on the interval [1/2, 1], then one spectrum is enough to determine the
potential q uniquely. After that, half inverse problems for differential opera-
tors were respectively investigated by many authors (see [11–18]), in particu-
lar, Castillo [12] or Suzuki [13] independently showed that coefficient h of the
boundary condition is necessary for the Hochstadt–Lieberman Theorem by an
example. An alternative approach to inverse spectral theory is via the Weyl
m-function. Marchenko [19] proved that the Weyl m-function of the Sturm–
Liouville operator uniquely determined the coefficients h,H of the boundary
conditions as well as the potential q. A lots of related results were obtained
by this approach (see [4,7,19–26]) or the method of spectral mappings (see
[5,6,14,15,17,27,28]). One of the interesting results was achieved by Gesztesy
and Simon [21], they used the Weyl m-function to study the inverse spectral
problem of Eq. (1.1) with Robin boundary conditions from prescribed partial
information on the potential and parts of one spectrum, which is a generaliza-
tion of the Hochstadt–Lieberman Theorem [11].

Theorem 1.1 ([21,Theorem 1.3]). Let σ(L′) = {λn}∞
n=0 be the spectrum of

Eq. (1.1) with Robin boundary conditions. If q is prescribed on the interval
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[0, 1
2 + α

2 ] for some α ∈ [0, 1), then the potential q a.e. on the whole interval
[0, 1] and coefficient H of the boundary condition can be uniquely determined
by coefficient h of the boundary condition and a subset S ⊆ σ(L′) satisfying

�{λ ∈ S|λ ≤ t)} ≥ (1 − α)�{λ ∈ σ(L′)|λ ≤ t)} +
α

2
, (1.4)

for all sufficiently large t ∈ R+.

Theorem 1.1 implies that partial information on the potential (more than
one half of the interval) and parts of one spectrum are sufficient to determine
the potential on the whole interval. Suzuki [13] showed that one spectrum
cannot uniquely determine the potential q if q is prescribed on [0, 1

2 − ε] for
0 < ε < 1

2 by an example. Hence, people may interest in the following inverse
problem:

IP-1: Assuming that q is prescribed on [0, 1
2 − ε], 0 < ε < 1

2 . What extra
conditions can ensure the unique determination of the potential?

The purpose of this paper is to solve IP-1 for the problem (1.1)–(1.3). We
first establish some uniqueness theorems for Sturm–Liouville equations with
boundary conditions linearly dependent on the spectral parameter from partial
information of the potential and parts of two spectra. And then we obtain two
uniqueness theorems for the problem (1.1)–(1.3) from partial information of the
potential and a subset of pairs of eigenvalues and the normalization constants
of the corresponding eigenvalues. The techniques used here are based on the
Weyl function and methods developed in Refs. [6,21] and [23].

This article is organized as follows: In Sect. 2, we present preliminaries
for Sturm–Liouville equations with boundary conditions linearly dependent on
the spectral parameter. We state main results and prove the main results in
Sect. 3.

2. Preliminaries

In this section, we present preliminaries for the boundary value problem L.
Let S1(x, λ), S2(x, λ), u−(x, λ) and u+(x, λ) be solutions of Eq. (1.1)

which satisfy the initial conditions:

S1(0, λ) = 0, S′
1(0, λ) = 1, S2(0, λ) = 1, S′

2(0, λ) = 0, (2.1)
u−(0, λ) = λ − h1, u′

−(0, λ) = h3 − h2λ, (2.2)

u+(1, λ) = λ − H1, u′
+(1, λ) = H2λ − H3. (2.3)

Clearly, U0(u−) = U1(u+) = 0 and

u−(x, λ) = (λ − h1)S2(x, λ) + (h3 − h2λ)S1(x, λ), (2.4)
u+(x, λ) = U1(S1)S2(x, λ) − U1(S2)S1(x, λ). (2.5)
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Let

Δ(λ) := [u+, u−](x, λ), (2.6)

where [y, z](x) := y(x)z′(x)−y′(x)z(x) is the Wronskian of y and z. Therefore
Δ(λ) is independent of the variable x and

Δ(λ) = U1(u−) = −U0(u+), (2.7)

which is called the characteristic function of the boundary value problem L.
It is easy to show that all zeros λn, n ∈ N0, of Δ(λ) are real and simple.

Let σ(L) = {λn}∞
n=0 be the spectrum of L. Since u−(x, λn) and u+(x, λn) are

eigenfunctions of the corresponding eigenvalue λn, then there exists κn such
that

u+(x, λn) = κnu−(x, λn), (2.8)

where κn is called the normalization constant of the corresponding eigenvalue
λn. Hence κn �= 0,∞ and

u+(0, λn) = κn(λn − h1), λn − h1 �= 0,

u+(0, λn) = 0, u′
+(0, λn) = κn(h3 − h2λ), λn − h1 = 0. (2.9)

From Ref. [6], we have the following asymptotic formulae

u−(x, λ) = ρ2 cos ρx + O(ρeτx),

u′
−(x, λ) = −ρ3 sin ρx + O(ρ2eτx),

(2.10)

u+(x, λ) = ρ2 cos ρ(1 − x) + O(ρeτ(1−x)),

u′
+(x, λ) = ρ3 sin ρ(1 − x) + O(ρ2eτ(1−x)),

(2.11)

and

Δ(λ) = −ρ5 sin ρ + O(ρ4eτ ), (2.12)

where ρ =
√

λ, τ = |Imρ|.
Therefore, the asymptotic formula of eigenvalues

√
λn of the boundary

value problem L is
√

λn = (n − 2)π +
ω

nπ
+

ln
n

, (2.13)

where ω = 1
2

∫ 1

0
q(x)dx − h2 − H2 and {ln} ∈ l2.

Denote Gδ′ := {ρ : |ρ−kπ| ≥ δ′, k ∈ Z} for small sufficiently δ′ > 0, then
there exists a constant Cδ′ such that

|Δ(λ)| ≥ Cδ′ |ρ|5eτ , ρ ∈ Gδ′ , |ρ| 	 1. (2.14)

Let Φ(x, λ) be the solution of Eq. (1.1) under the condition U1(Φ) = 1, U0(Φ) =
0. Put M(λ) := Φ(0, λ), which is called the Weyl function for L. We have
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Φ(x, λ) = −u+(x, λ)
Δ(λ)

=
1

λ − h1
(S1(x, λ) + M(λ)u−(x, λ)), (2.15)

where

M(λ) = −u+(0, λ)
Δ(λ)

, (2.16)

which is called the Weyl function of the boundary value problem L. Con-
sequently the Weyl function M(λ) is meromorphic with simple poles in the
points λ = λn for n ∈ N0.

The following two lemmas are important for us to prove main results in
this paper.

Lemma 2.1 ([6]). Let M(λ) be the Weyl function of the boundary value problem
L. If coefficients hl, l = 1, 2, 3, of the boundary condition are given a priori,
then M(λ) uniquely determines coefficients Hl, l = 1, 2, 3, of the boundary
condition as well as q (a.e.) on the interval [0, 1].

Lemma 2.2 ([21, P roposition B.6]). Let f(z) be an entire function such that
(1) sup|z|=Rk

|f(z)| ≤ C1exp(C2R
α
k ) for some 0 < α < 1, some sequence

Rk → ∞ as k → ∞ and C1, C2 > 0;
(2) lim|x|→∞ |f(ix)| = 0, x ∈ R.
Then f ≡ 0.

3. Inverse Problems with Partial Information

In this section, we study the uniqueness theorems for Sturm–Liouville equa-
tions with boundary conditions linearly dependent on the spectral parameter.
The authors intent to recover the boundary value problem L from partial
information on the potential q and parts of two spectra or from partial infor-
mation on the potential q and a subset of eigenvalues and the corresponding
normalization constants.

Denote the boundary value problems Lkj := Lkj(qk, U0j , U1k), k, j = 1, 2,
of the form

Lkjuk := −u′′
k + qk(x)uk = λuk , x ∈ (0, 1), (3.1)

with the boundary conditions

U0j(uk) := (λ − h1j)u′
k(0, λ) + (h2jλ − h3j)uk(0, λ) = 0, (3.2)

U1k(uk) := (λ − H1k)u′
k(1, λ) − (H2kλ − H3k)uk(1, λ) = 0, (3.3)

where qk are real-valued functions with qk ∈ L2[0, 1], hlj ,Hlk∈ R, l =
1, 2, 3, k, j = 1, 2, are such that

r0j =h3j −h1jh2j >0, r1k =H1kH2k−H3k >0,
h21λ−h31

λ−h11
�= h22λ−h32

λ−h12
.

(3.4)



110 W. Y. Ping and C. T. Shieh Results. Math.

And let σ(Lkj)={λkjn}∞
n=0, k, j =1, 2, be the spectrum of Lkj . Since h21λ−h31

λ−h11
�=

h22λ−h32
λ−h12

, we can easily prove σ(Lk1) ∩ σ(Lk2)=∅ for k=1 or k=2.
We obtain the following Theorem 3.1.

Theorem 3.1. Let σ(Lkj) = {λkjn}∞
n=0, k, j = 1, 2, be as that defined above,

(α0, α1, α2) ∈ [0, 1) × [0, 1/2] × [0, 1/2], Aj ⊆ σ(L1j)
⋂

σ(L2j) for j = 1 or 2.
Suppose the coefficients hl1, l = 1, 2, 3, of the boundary conditions are given a
priori and the following conditions:
(1) α0 − α1 − α2 ≥ 0,
(2) q1 = q2 on the interval [0, α0],
(3) there are two nonnegative integers β1 and β2 with β1 + β2 = 6 and two

nonnegative small numbers ε1 and ε2 with ε1 +ε2 > 0 so that the inequal-
ities

�{λ ∈ Aj |λ ≤ t)} ≥ (1 − 2αj)�{λ ∈ σ(L1j)|λ ≤ t)}
+

10αj − βj + εj

2
, j = 1, 2 (3.5)

holds for t 	 1,

are satisfied, then

q1 = q2 a.e. on [0, 1] and Hl1 = Hl2, l = 1, 2, 3.

Proof. Let uk+(x, λ), k = 1, 2, be the solution of Eq. (3.1) with the terminal
conditions uk+(1, t) = λ − H1k and u′

k+(1, t) = H2kλ − H3k. By Green’s
formula, we have

1∫

0

Q(x)u1+(x, λ)u2+(x, λ)dx

= [u1+, u2+](1, λ) − [u1+, u2+](0, λ)
= F (1, λ) − F (0, λ),

where Q(x) = q2(x) − q1(x),

F (α0, λ) := [u1+, u2+](α0, λ)

and

Δkj(λ)=−[(λ−h1j)u′
k+(0, λ)+(h2jλ−h3j)uk+(0, λ)] for k, j =1, 2. (3.6)

Note that

F (0, λ) = u1+(0, λ)u′
2+(0, λ) − u′

1+(0, λ)u2+(0, λ)

=
1

λ − h1j
[u1+(0, λ)U0j(u2+) − u2+(0, λ)U0j(u1+)]

=
1

h2jλ − h3j
[u′

2+(0, λ)U0j(u1+) − u′
1+(0, λ)U0j(u2+)]. (3.7)
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From Lemma 1 in Ref. [6] and (3.7), we see that F (0, λ1jn) = 0 for λ1jn ∈
σ(L1j)

⋂
σ(L2j) hold. The assumption (2) yields to

F (0, λ) = F (α0, λ). (3.8)

Hence

F (α0, λ1jn) = 0,∀λ1jn ∈ Aj ⊆ σ(L1j)
⋂

σ(L2j), j = 1, 2.

Without loss of generality, we assume all eigenvalues λkjn �= 0 in this section.
And denote t0 := lim infn∈N0{|λ11n|, |λ12n|}. By virtue of Ref. [6, Lemma 4],
this yields

Δkj(λ) = ckj

∏

n∈N0

(1 − λ

λkjn
), k, j = 1, 2, (3.9)

where

ckj = π
2∏

n=0

λkjn

∞∏

n=3

λkjn

(n − 2)2

are constant. From (2.10)–(2.11), we have

|F (α0, λ)| = O(ρ4e2τ(1−α0)) (3.10)

and

|Δ1j(λ)| = O(ρ5eτ ). (3.11)

Define

Gj(λ) =
∏

λ1jn∈Aj

(

1 − λ

λ1jn

)

for j = 1, 2 (3.12)

and

K(λ) =
F (α0, λ)

G1(λ)G2(λ)
. (3.13)

Therefore, K(λ) is an entire function in λ. Denote

NGj
(t) = �{λ1jn ∈ Aj |λ1jn ≤ t}, NΔ1j

(t) = �{λ1jn ∈ σ(L1j)|λ1jn ≤ t}.

Then the assumption (3) leads

NGj
(t) ≥ (1 − 2αj)NΔ1j

(t) +
10αj − βj + εj

2
and there exists constants tj ≥ t0 and C1j such that

NGj
=

{
NGj

(t) ≥ (1 − 2αj)NΔ1j
(t) + 10αj−βj+εj

2 , t ≥ tj ,
NGj

(t) ≥ (1 − 2αj)NΔ1j
(t) − C1j , t < tj .

(3.14)

Since Δ1j(λ) is an entire function in λ of order 1
2 , there exists a positive

constant C such that

NGj
(t) ≤ NΔ1j

(t) ≤ Ct
1
2 , (3.15)

and NGj
(t0) = NΔ1j

(t0) = 0.
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For a fixed real number y and |y| 	 1, we have

ln |Gj(iy)|= 1
2

ln Gj(iy)Gj(iy)=
1
2

∑

λ1jn∈Aj

ln
(

1− iy

λ1jn

) (

1+
iy

λ1jn

)

=
1
2

∑

λ1jn∈Aj

ln
(

1+
y2

(λ1jn)2

)

=
1
2

∞∫

t0

ln
(

1+
y2

t2

)

dNGj
(t)

=
1
2

ln(1+
y2

t2
)NGj

(t)|∞t0 − 1
2

∞∫

t0

NGj
(t)d

[

ln
(

1+
y2

t2

)]

. (3.16)

Since

ln
(

1 +
y2

t2

)

= O

(
1
t2

)

, as t → ∞,

we obtain

lim
t→∞ ln

(

1 +
y2

t2

)

NGj
(t) = 0

and

lim
t→∞ ln

(

1 +
y2

t2

)

NΔ1j
(t) = 0.

Consequently, from (3.16) together with the following relation

y2

t3 + ty2
= − d

dt

(
1
2

ln
(

1 +
y2

t2

))

,

we have

ln |Gj(iy)|

=

∞∫

t0

y2

t3+ty2 NGj
(t)dt =

tj∫

t0

y2

t3+ty2 NGj
(t)dt+

∞∫

tj

y2

t3+ty2 NGj
(t)dt

≥ (1−2αj)

∞∫

t0

y2

t3+ty2 NΔ1j
(t)dt+

10αj −βj +εj

2

∞∫

t0

y2

t3+ty2 dt

−
(

10αj − βj +εj

2
+C1j

) tj∫

t0

y2

t3+ty2 dt

= (1−2αj) ln |Δ1j(iy)| +
10αj −βj +εj

4
ln

(

1+
y2

t20

)

+
10αj −βj +εj +2C1j

4
ln

t20 + y2

t2j +y2
+

10αj −βj +εj +2C1j

2
ln | t

2
j

t20
|. (3.17)
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For sufficiently large y ∈ R, (3.17) implies

|Gj(iy)| ≥ C01j |Δ1j(iy)|1−2αj |y|10αj−βj+εj , j = 1, 2, (3.18)

where C01j are constant. Therefore for sufficiently large y ∈ R, we have

|G1(iy)G2(iy)| ≥ C011C012|y|4+ε1+ε2e2τ(1−α1−α2). (3.19)

Hence

|K(iy)| =
F (α0, iy)

G11(iy)G12(iy)
= O

(
1

|y|ε1+ε2

)

. (3.20)

Analogous to the proof of Ref. [21], we can prove the condition (1) for the
entire function K(λ) in Lemma 2.2. From Lemma 2.2, we obtain

K(λ) = 0, ∀λ ∈ C.

i.e.,

F (α0, λ) = 0, ∀λ ∈ C.

Consequently

F (0, λ) = 0, ∀λ ∈ C.

i.e.,

u1+(0, λ)u′
2+(0, λ) − u′

1+(0, λ)u2+(0, λ) = 0, ∀λ ∈ C. (3.21)

Henceforth
u1+(0, λ)

(h12λ − h13)u1+(0, λ) − (λ − h11)u′
1+(0, λ)

=
u2+(0, λ)

(h12λ − h13)u2+(0, λ) − (λ − h11)u′
2+(0, λ)

or equivalently

M1(λ) = M2(λ), ∀λ ∈ C. (3.22)

From Lemma 2.1, we conclude that

q1 = q2 a.e. on [0, 1] and Hl1 = Hl2, l = 1, 2, 3.

This completes the proof of Theorem 3.1 �

Let us present an example of Theorem 3.1 to the readers. If we take
α0 = 1

2 , α1 = 0, α2 = 1
2 , β1 = 1, β2 = 5, ε1 = 1 and ε2 = 0, then Theorem 3.1

turns to the Hochstadt-Lieberman type theorem as follows.

Corollary 3.2. Let σ(Lk1) = {λk1n}∞
n=0 be as that defined in Theorem 3.1 for

k = 1 and 2, and coefficients hl1, l = 1, 2, 3, of the boundary condition are
given a priori. If q1 = q2 on the interval [0, 1

2 ] and

λ11n = λ21n, ∀n ≥ 0,
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then

q1 = q2 a.e. on [0, 1] and Hl1 = Hl2, l = 1, 2, 3.

Instead of using parts of two spectral sets and partial information on the
potential, one can use a subset of eigenvalues and the corresponding normal-
ization constants to establish the uniqueness theorems for the boundary value
problem L. In the remaining of this section, we shall use the techniques in Ref.
[23] to some uniqueness theorems.

Theorem 3.3. Let σ(Lk) = {λkn}∞
n=0, k = 1, 2, be the spectrum of Eq. (3.1) with

boundary conditions (1.2) and (3.3). Assuming that the coefficients hl, l =
1, 2, 3, of the boundary condition are given a priori. Suppose the following
conditions
(1) q1 = q2 a.e. on the interval [0, α] for some α ∈ [0, 1),
(2) there exists a sufficiently small positive number ε and a set A =

{λ1j}j∈Λ ⊆ σ(L1)
⋂

σ(L2), where Λ ⊆ N0 so that

κ1j = κ2j for all λ1j ∈ A

and the equality

�{λ ∈ A|λ ≤ t)} ≥ (1 − α)�{λ ∈ σ(L11)|λ ≤ t)} +
5α − 3 + 2ε

4
(3.23)

holds for all sufficiently large t ∈ R+.

are satisfied. Then q1 = q2 on [0,1] and Hl1 = Hl2, l = 1, 2, 3.

Proof. Let uk+(x, λ) be the solution of Eq. (3.1) with the initial conditions
uk+(1, λ) = λ−H1k and u′

k+(1, λ) = H2kλ−H3k for k = 1, 2. For an arbitrary
solution v2 of Eq. (3.1) of the corresponding potential q2, we denote

Fv(x, λ) := [u1+ − u2+, v2](x, λ) (3.24)

and

Δ0k(λ) = −[(λ − h1)u′
k+(0, λ) + (h2λ − h3)uk+(0, λ)] for k = 1, 2. (3.25)

Then

Fv(0, λ)=(u′
1+(1, λ)−u′

2+(1, λ))v2(1, λ)−
1∫

0

(q1−q2)u1+v2dx

=[u1+−u2+, v2](0, λ)

=
1

λ−h1

∣
∣
∣
∣
u1+(0, λ)−u2+(0, λ) v2(0, λ)

Δ02(λ)−Δ01(λ) (λ−h1)v′
2(0, λ)+(h2λ−h3)v2(0, λ)

∣
∣
∣
∣

=
∣
∣
∣
∣

1
λ−h1

(u1+(0, λ)−u2+(0, λ)) 1
λ−h1

v2(0, λ)
Δ02(λ)−Δ01(λ) (λ − h1)v′

2(0, λ)+(h2λ−h3)v2(0, λ)

∣
∣
∣
∣ .

(3.26)
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If λ1j − h1 �= 0 for some j ∈ N0, (3.26) together with (2.9) implies

Δ02(λ1j) − Δ01(λ1j) = 0 and

1
λ1j − h1

(u1+(0, λ1j) − u2+(0, λ1j)) = 0 for all λ1j ∈ A. (3.27)

If λ1j − h1 = 0 for some j ∈ N0, (2.9) yields

u1+(0, λ1j)=u2+(0, λ1j)=0 and u′
1+(0, λ1j)−u′

2+(0, λ1j)=0 for all λ1j ∈A.

(3.28)

Therefore, (3.27) and (3.28) implies

Fv(0, λ1j) = 0 for all λ1j ∈ A. (3.29)

By virtue of the assumption (1) together with the Green’s formula, we obtain

Fv(0, λ) = (u′
1+(1, λ) − u′

2+(1, λ))v2(1, λ) −
1∫

0

(q1 − q2)u1+v2dx

= (u′
1+(1, λ) − u′

2+(1, λ))v2(1, λ) −
1∫

α

(q1 − q2)u1+v2dx

= [u1+ − u2+, v2](α, λ). (3.30)

Next, we will prove u1+(α, λ) = u2+(α, λ) and u′
1+(α, λ) = u′

2+(α, λ) for
all λ ∈ C.

At first, we show that u1+(α, λ) = u2+(α λ) holds. Let v2(x, λ) =:
vD(x, λ) be the solution of Eq. (3.1) with the conditions vD(α, λ) = 0 and
v′

D(α, λ) = 1. Then

FvD
(0, λ) = u1+(α, λ) − u2+(α, λ). (3.31)

Define the entire functions GA(λ) and HD(λ) by

GA(λ) =
∏

λ1n∈A

(1 − λ

λ1n
) and HD(λ) =

FvD
(0, λ)

GA(λ)
. (3.32)

By (2.10) and (3.29), we have

u1+(α, iy) − u2+(α, iy) = O(|y| 1
2 e(1−α)|y| 1

2 ). (3.33)

for sufficiently large |y|. Analogous to the argument in the proof of Theorem
3.1, we have

|GA(iy)| ≥ C1|Δ01(iy)|1−α|y| 5α−3+2ε
2 ≥ C2|y|1+εe(1−α)|y| 1

2 , (3.34)

where C1, C2 are positive constants. Hence

|HD(iy)| = O

(
1

|y| 1+2ε
2

)

. (3.35)
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By Lemma 2.2, we obtain

HD(λ) = 0, ∀λ ∈ C.

Therefore

u1+(α, λ) − u2+(α, λ) = 0, ∀λ ∈ C. (3.36)

Secondly, we will prove u′
1+(α, λ) = u′

2+(α, λ) for all λ ∈ C. Let us take
v2(x, λ) =: vN (x, λ) be the solution of Eq. (3.1) with the initial conditions
vN (α, λ) = 1 and v′

N (α, λ) = 0. Then

FvN
(0, λ) = u′

2+(α, λ) − u′
1+(α, λ). (3.37)

Define the entire function HN (λ) by

HN (λ) =
FvN

(0, λ)
GA(λ)

. (3.38)

By (2.11) again, we have

|u′
2+(α, iy) − u′

1+(α, iy)| = O(|y|e(1−α)|y| 1
2 ). (3.39)

Hence

|HN (iy)| = O

(
1

|y|ε
)

. (3.40)

Applying Lemma 2.2, we get

HN (λ) = 0, ∀λ ∈ C. (3.41)

Therefore

u′
2+(α, λ) − u′

1+(α, λ) = 0, ∀λ ∈ C. (3.42)

(3.36) and (3.42) together with the assumption (1) leads to the conclusion

[u1+, u2+](0, λ) = [u1+, u2+](α, λ) = 0, ∀λ ∈ C. (3.43)

Hence

M1(λ) = M2(λ). (3.44)

By Lemma 2.1, we conclude that

q1 = q2 on [0, 1] and Hl1 = Hl2 for l = 1, 2, 3.

By now, the proof of Theorem 3.3 is completed. �

Remark. Theorem 3.3 is a generalization of Theorem 4.1 in Ref. [23].

Let α = 1
2 and ε = 1

4 , we have the following corollary.

Corollary 3.4. Let σ(L) = {λj}∞
j=0 be the spectrum of the problem (1.1)–(1.3).

Assume that the coefficients hl, l = 1, 2, 3, of the boundary condition are given
a priori and q on the interval [0, 1

2 ] is known a priori, then the even spectral
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data {(λ2j , κ2j)}∞
j=0 or the odd spectral data {(λ2j−1, κ2j−1)}∞

j=1 is sufficient
to determine the potential q on the whole interval [0, 1] and coefficients Hl for
l = 1, 2, 3.
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