517 research outputs found
Precision neutron interferometric measurements of the n-p, n-d, and n-3He zero-energy coherent neutron scattering amplitudes
We have performed high precision measurements of the zero-energy neutron
scattering amplitudes of gas phase molecular hydrogen, deuterium, and He
using neutron interferometry. We find
fm\cite{Schoen03},
fm\cite{Black03,Schoen03}, and
fm\cite{Huffman04}. When combined with the previous world data, properly
corrected for small multiple scattering, radiative corrections, and local field
effects from the theory of neutron optics and combined by the prescriptions of
the Particle Data Group, the zero-energy scattering amplitudes are:
fm, fm, and fm. The precision of
these measurements is now high enough to severely constrain NN few-body models.
The n-d and n-He coherent neutron scattering amplitudes are both now in
disagreement with the best current theories. The new values can be used as
input for precision calculations of few body processes. This precision data is
sensitive to small effects such as nuclear three-body forces, charge-symmetry
breaking in the strong interaction, and residual electromagnetic effects not
yet fully included in current models.Comment: 6 pages, 4 figures, submitted to Physica B as part of the Festschrift
honouring Samuel A. Werner at the International Conference on Neutron
Scattering 200
On tolerable and desirable behaviors in supervisory control of discrete event systems
We formulate and solve a new supervisory control problem for discrete event systems. The objective is to design a logical controller—or supervisor—such that the discrete event system satisfies a given set of requirements that involve event ordering. The controller must deal with a limited amount of controllability in the form of uncontrollable events. Our problem formulation considers that the requirements for the behavior (i.e., set of traces) of the controlled system are specified in terms of a “desired” behavior and a larger “tolerated” behavior. Due to the uncontrollable events, one may wish to tolerate behavior that sometimes exceeds the ideal desired behavior if overall this results in achieving more of the desired behavior. The general solution of our problem is completely characterized. The nonblocking solution is also analyzed in detail. This solution requires the study of a new class of controllable languages. Several results are proved about this class of languages. Algorithms to compute certain languages of interest within this class are also presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45034/1/10626_2005_Article_BF01797143.pd
Modeling predicted that tobacco control policies targeted at lower educated will reduce the differences in life expectancy.
Background and Objective: To estimate the effects of reducing the prevalence of smoking in lower educated groups on educational differences in life expectancy. Methods: A dynamic Markov-type multistate transition model estimated the effects on life expectancy of two scenarios. A "maximum scenario" where educational differences in prevalence of smoking disappear immediately, and a "policy target-scenario" where difference in prevalence of smoking is halved over a 20-year period. The two scenarios were compared to a reference scenario, where smoking prevalences do not change. Five Dutch cohort studies, involving over 67,000 participants aged 20 to 90 years, provided relative mortality risks by educational level, and smoking habits were assessed using national data of more than 120,000 persons. Results: In the reference scenario, the difference in life expectancy at age 40 between highest and lowest educated groups was 5.1 years for men and 2.7 years for women. In the "maximum scenario" these differences were reduced to 3.6 years for men and 1.7 years for women (reduction ≈30%), and in the "policy target-scenario" differences were 4.7 years for men and 2.4 years for women (reduction ≈10%). Conclusion: Theoretically, educational differences in life expectancy would be reduced by 30% at maximum, if variations in smoking prevalence were eliminated completely. In practice, tobacco control policies that are targeted at the lower educated may reduce the differences in life expectancy by approximately 10%. © 2006 Elsevier Inc. All rights reserved
Eutectic colony formation: A phase field study
Eutectic two-phase cells, also known as eutectic colonies, are commonly
observed during the solidification of ternary alloys when the composition is
close to a binary eutectic valley. In analogy with the solidification cells
formed in dilute binary alloys, colony formation is triggered by a
morphological instability of a macroscopically planar eutectic solidification
front due to the rejection by both solid phases of a ternary impurity that
diffuses in the liquid. Here we develop a phase-field model of a binary
eutectic with a dilute ternary impurity and we investigate by dynamical
simulations both the initial linear regime of this instability, and the
subsequent highly nonlinear evolution of the interface that leads to fully
developed two-phase cells with a spacing much larger than the lamellar spacing.
We find a good overall agreement with our recent linear stability analysis [M.
Plapp and A. Karma, Phys. Rev. E 60, 6865 (1999)], which predicts a
destabilization of the front by long-wavelength modes that may be stationary or
oscillatory. A fine comparison, however, reveals that the assumption commonly
attributed to Cahn that lamella grow perpendicular to the envelope of the
solidification front is weakly violated in the phase-field simulations. We show
that, even though weak, this violation has an important quantitative effect on
the stability properties of the eutectic front. We also investigate the
dynamics of fully developed colonies and find that the large-scale envelope of
the composite eutectic front does not converge to a steady state, but exhibits
cell elimination and tip-splitting events up to the largest times simulated.Comment: 18 pages, 18 EPS figures, RevTeX twocolumn, submitted to Phys. Rev.
A prospective open label 2-8 year extension of the randomised controlled ICON trial on the long-term efficacy and safety of occipital nerve stimulation in medically intractable chronic cluster headache
BackgroundWe demonstrated in the randomised controlled ICON study that 48-week treatment of medically intractable chronic cluster headache (MICCH) with occipital nerve stimulation (ONS) is safe and effective. In L-ICON we prospectively evaluate its long-term effectiveness and safety.MethodsICON participants were enrolled in L-ICON immediately after completing ICON. Therefore, earlier ICON participants could be followed longer than later ones. L-ICON inclusion was stopped after the last ICON participant was enrolled in L-ICON and followed for ≥2 years by completing six-monthly questionnaires on attack frequency, side effects, subjective improvement and whether they would recommend ONS to others. Primary outcome was the change in mean weekly attack frequency 2 years after completion of the ICON study compared to baseline. Missing values for log-transformed attack-frequency were imputed for up to 5 years of follow-up. Descriptive analyses are presented as (pooled) geometric or arithmetic means and 95% confidence intervals.FindingsOf 103 eligible participants, 88 (85%) gave informed consent and 73 (83%) were followed for ≥2 year, 61 (69%) ≥ 3 year, 33 (38%) ≥ 5 years and 3 (3%) ≥ 8.5 years. Mean (±SD) follow-up was 4.2 ± 2.2 years for a total of 370 person years (84% of potentially 442 years). The pooled geometric mean (95% CI) weekly attack frequency remained considerably lower after one (4.2; 2.8–6.3), two (5.1; 3.5–7.6) and five years (4.1; 3.0–5.5) compared to baseline (16.2; 14.4–18.3). Of the 49/88 (56%) ICON ≥50% responders, 35/49 (71%) retained this response and 15/39 (38%) ICON non-responders still became a ≥50% responder for at least half the follow-up period. Most participants (69/88; 78% [0.68–0.86]) reported a subjective improvement from baseline at last follow-up and 70/88 (81% [0.70–0.87]) would recommend ONS to others. Hardware-related surgery was required in 44/88 (50%) participants in 112/122 (92%) events (0.35 person-year−1 [0.28–0.41]). We didn't find predictive factors for effectiveness.Paroxysmal Cerebral Disorder
Star Models with Dark Energy
We have constructed star models consisting of four parts: (i) a homogeneous
inner core with anisotropic pressure (ii) an infinitesimal thin shell
separating the core and the envelope; (iii) an envelope of inhomogeneous
density and isotropic pressure; (iv) an infinitesimal thin shell matching the
envelope boundary and the exterior Schwarzschild spacetime. We have analyzed
all the energy conditions for the core, envelope and the two thin shells. We
have found that, in order to have static solutions, at least one of the regions
must be constituted by dark energy. The results show that there is no physical
reason to have a superior limit for the mass of these objects but for the ratio
of mass and radius.Comment: 20 pages, 1 figure, references and some comments added, typos
corrected, in press GR
Structure and Function of the Hair Cell Ribbon Synapse
Faithful information transfer at the hair cell afferent synapse requires synaptic transmission to be both reliable and temporally precise. The release of neurotransmitter must exhibit both rapid on and off kinetics to accurately follow acoustic stimuli with a periodicity of 1 ms or less. To ensure such remarkable temporal fidelity, the cochlear hair cell afferent synapse undoubtedly relies on unique cellular and molecular specializations. While the electron microscopy hallmark of the hair cell afferent synapse — the electron-dense synaptic ribbon or synaptic body — has been recognized for decades, dissection of the synapse’s molecular make-up has only just begun. Recent cell physiology studies have added important insights into the synaptic mechanisms underlying fidelity and reliability of sound coding. The presence of the synaptic ribbon links afferent synapses of cochlear and vestibular hair cells to photoreceptors and bipolar neurons of the retina. This review focuses on major advances in understanding the hair cell afferent synapse molecular anatomy and function that have been achieved during the past years
Measurement of the photon-jet production differential cross section in collisions at \sqrt{s}=1.96~\TeV
We present measurements of the differential cross section dsigma/dpT_gamma
for the inclusive production of a photon in association with a b-quark jet for
photons with rapidities |y_gamma|< 1.0 and 30<pT_gamma <300 GeV, as well as for
photons with 1.5<|y_gamma|< 2.5 and 30< pT_gamma <200 GeV, where pT_gamma is
the photon transverse momentum. The b-quark jets are required to have pT>15 GeV
and rapidity |y_jet| < 1.5. The results are based on data corresponding to an
integrated luminosity of 8.7 fb^-1, recorded with the D0 detector at the
Fermilab Tevatron Collider at sqrt(s)=1.96 TeV. The measured cross
sections are compared with next-to-leading order perturbative QCD calculations
using different sets of parton distribution functions as well as to predictions
based on the kT-factorization QCD approach, and those from the Sherpa and
Pythia Monte Carlo event generators.Comment: 10 pages, 9 figures, submitted to Phys. Lett.
Limits on anomalous trilinear gauge boson couplings from WW, WZ and Wgamma production in pp-bar collisions at sqrt{s}=1.96 TeV
We present final searches of the anomalous gammaWW and ZWW trilinear gauge
boson couplings from WW and WZ production using lepton plus dijet final states
and a combination with results from Wgamma, WW, and WZ production with leptonic
final states. The analyzed data correspond to up to 8.6/fb of integrated
luminosity collected by the D0 detector in pp-bar collisions at sqrt{s}=1.96
TeV. We set the most stringent limits at a hadron collider to date assuming two
different relations between the anomalous coupling parameters
Delta\kappa_\gamma, lambda, and Delta g_1^Z for a cutoff energy scale Lambda=2
TeV. The combined 68% C.L. limits are -0.057<Delta\kappa_\gamma<0.154,
-0.015<lambda<0.028, and -0.008<Delta g_1^Z<0.054 for the LEP parameterization,
and -0.007<Delta\kappa<0.081 and -0.017<lambda<0.028 for the equal couplings
parameterization. We also present the most stringent limits of the W boson
magnetic dipole and electric quadrupole moments.Comment: 10 pages, 5 figures, submitted to PL
- …