554 research outputs found

    GEM operation in helium and neon at low temperatures

    Full text link
    We study the performance of Gas Electron Multipliers (GEMs) in gaseous He, Ne and Ne+H2 at temperatures in the range of 2.6-293 K. In He, at temperatures between 62 and 293 K, the triple-GEM structures often operate at rather high gains, exceeding 1000. There is an indication that this high gain is achieved by Penning effect in the gas impurities released by outgassing. At lower temperatures the gain-voltage characteristics are significantly modified probably due to the freeze-out of impurities. In particular, the double-GEM and single-GEM structures can operate down to 2.6 K at gains reaching only several tens at a gas density of about 0.5 g/l; at higher densities the maximum gain drops further. In Ne, the maximum gain also drops at cryogenic temperatures. The gain drop in Ne at low temperatures can be reestablished in Penning mixtures of Ne+H2: very high gains, exceeding 10000, have been obtained in these mixtures at 50-60 K, at a density of 9.2 g/l corresponding to that of saturated Ne vapor near 27 K. The results obtained are relevant in the fields of two-phase He and Ne detectors for solar neutrino detection and electron avalanching at low temperatures.Comment: 13 pages, 14 figures. Accepted for publishing in Nucl. Instr. and Meth.

    Living for the weekend: youth identities in northeast England

    Get PDF
    Consumption and consumerism are now accepted as key contexts for the construction of youth identities in de-industrialized Britain. This article uses empirical evidence from interviews with young people to suggest that claims of `new community' are overstated, traditional forms of friendship are receding, and increasingly atomized and instrumental youth identities are now being culturally constituted and reproduced by the pressures and anxieties created by enforced adaptation to consumer capitalism. Analysis of the data opens up the possibility of a critical rather than a celebratory exploration of the wider theoretical implications of this process

    Two-Proton Correlations near Midrapidity in p+Pb and S+Pb Collisions at the CERN SPS

    Get PDF
    Correlations of two protons emitted near midrapidity in p+Pb collisions at 450 GeV/c and S+Pb collisions at 200A GeV/c are presented, as measured by the NA44 Experiment. The correlation effect, which arises as a result of final state interactions and Fermi-Dirac statistics, is related to the space-time characteristics of proton emission. The measured source sizes are smaller than the size of the target lead nucleus but larger than the sizes of the projectiles. A dependence on the collision centrality is observed; the source size increases with decreasing impact parameter. Proton source sizes near midrapidity appear to be smaller than those of pions in the same interactions. Quantitative agreement with the results of RQMD (v1.08) simulations is found for p+Pb collisions. For S+Pb collisions the measured correlation effect is somewhat weaker than that predicted by the model simulations, implying either a larger source size or larger contribution of protons from long-lived particle decays.Comment: 10 pages (LaTeX) text, 4 (EPS) figures; accepted for publication in Phys. Lett.

    Strange Meson Enhancement in PbPb Collisions

    Get PDF
    The NA44 Collaboration has measured yields and differential distributions of K+, K-, pi+, pi- in transverse kinetic energy and rapidity, around the center-of-mass rapidity in 158 A GeV/c Pb+Pb collisions at the CERN SPS. A considerable enhancement of K+ production per pi is observed, as compared to p+p collisions at this energy. To illustrate the importance of secondary hadron rescattering as an enhancement mechanism, we compare strangeness production at the SPS and AGS with predictions of the transport model RQMD.Comment: 11 pages, including 4 figures, LATE

    Computer modeling of diabetes and Its transparency: a report on the Eighth Mount Hood Challenge

    Get PDF
    Objectives The Eighth Mount Hood Challenge (held in St. Gallen, Switzerland, in September 2016) evaluated the transparency of model input documentation from two published health economics studies and developed guidelines for improving transparency in the reporting of input data underlying model-based economic analyses in diabetes. Methods Participating modeling groups were asked to reproduce the results of two published studies using the input data described in those articles. Gaps in input data were filled with assumptions reported by the modeling groups. Goodness of fit between the results reported in the target studies and the groups’ replicated outputs was evaluated using the slope of linear regression line and the coefficient of determination (R2). After a general discussion of the results, a diabetes-specific checklist for the transparency of model input was developed. Results Seven groups participated in the transparency challenge. The reporting of key model input parameters in the two studies, including the baseline characteristics of simulated patients, treatment effect and treatment intensification threshold assumptions, treatment effect evolution, prediction of complications and costs data, was inadequately transparent (and often missing altogether). Not surprisingly, goodness of fit was better for the study that reported its input data with more transparency. To improve the transparency in diabetes modeling, the Diabetes Modeling Input Checklist listing the minimal input data required for reproducibility in most diabetes modeling applications was developed. Conclusions Transparency of diabetes model inputs is important to the reproducibility and credibility of simulation results. In the Eighth Mount Hood Challenge, the Diabetes Modeling Input Checklist was developed with the goal of improving the transparency of input data reporting and reproducibility of diabetes simulation model results

    Taxonomic surrogacy in biodiversity assessments, and the meaning of Linnaean ranks

    Get PDF
    Copyright © 2006 The Natural History MuseumThe majority of biodiversity assessments use species as the base unit. Recently, a series of studies have suggested replacing numbers of species with higher ranked taxa (genera, families, etc.); a method known as taxonomic surrogacy that has an important potential to save time and resources in assesments of biological diversity. We examine the relationships between taxa and ranks, and suggest that species/higher taxon exchanges are founded on misconceptions about the properties of Linnaean classification. Rank allocations in current classifications constitute a heterogeneous mixture of various historical and contemporary views. Even if all taxa were monophyletic, those referred to the same rank would simply denote separate clades without further equivalence. We conclude that they are no more comparable than any other, non-nested taxa, such as, for example, the genus Rattus and the phylum Arthropoda, and that taxonomic surrogacy lacks justification. These problems are also illustrated with data of polychaetous annelid worms from a broad-scale study of benthic biodiversity and species distributions in the Irish Sea. A recent consensus phylogeny for polychaetes is used to provide three different family-level classifications of polychaetes. We use families as a surrogate for species, and present Shannon–Wiener diversity indices for the different sites and the three different classifications, showing how the diversity measures rely on subjective rank allocations.Y. Bertrand, F. Pleijel and G. W. Rous

    Charged kaon and pion production at midrapidity in proton nucleus and sulphur nucleus collisions

    Get PDF
    The NA44 collaboration has measured charged kaon and pion distributions at midrapidity in sulphur and proton collisions with nuclear targets at 200 and 450 GeV/c per nucleon, respectively. The inverse slopes of kaons are larger than those of pions. The difference in the inverse slopes of pions, kaons and protons, all measured in our spectrometer, increases with system size and is consistent with the buildup of collective flow for larger systems. The target dependence of both the yields and inverse slopes is stronger for the sulphur beam suggesting the increased importance of secondary rescattering for SA reactions. The rapidity density, dN/dy, of both K+ and K- increases more rapidly with system size than for pi+ in a similar rapidity region. This trend continues with increasing centrality, and according to RQMD, it is caused by secondary reactions between mesons and baryons. The K-/K+ ratio falls with increasing system size but more slowly than the pbar/p ratio. The pi-/pi+ ratio is close to unity for all systems. From pBe to SPb the K+/p ratio decreases while K-/pbar increases and ({K+*K-}/{p*pbar})**1/2 stays constant. These data suggest that as larger nuclei collide, the resulting system has a larger transverse expansion, baryon density and an increasing fraction of strange quarks.The NA44 collaboration has measured charged kaon and pion distributions at midrapidity in sulphur and proton collisions with nuclear targets at 200 and 450 GeV/c per nucleon, respectively. The inverse slopes of kaons are larger than those of pions. The difference in the inverse slopes of pions, kaons and protons, all measured in our spectrometer, increases with system size and is consistent with the buildup of collective flow for larger systems. The target dependence of both the yields and inverse slopes is stronger for the sulphur beam suggesting the increased importance of secondary rescattering for SA reactions. The rapidity density, dN/dy, of both K+ and K- increases more rapidly with system size than for pi+ in a similar rapidity region. This trend continues with increasing centrality, and according to RQMD, it is caused by secondary reactions between mesons and baryons. The K-/K+ ratio falls with increasing system size but more slowly than the pbar/p ratio. The pi-/pi+ ratio is close to unity for all systems. From pBe to SPb the K+/p ratio decreases while K-/pbar increases and ({K+*K-}/{p*pbar})**1/2 stays constant. These data suggest that as larger nuclei collide, the resulting system has a larger transverse expansion, baryon density and an increasing fraction of strange quarks.The NA44 collaboration has measured charged kaon and pion distributions at midrapidity in sulphur and proton collisions with nuclear targets at 200 and 450 GeV/c per nucleon, respectively. The inverse slopes of kaons are larger than those of pions. The difference in the inverse slopes of pions, kaons and protons, all measured in our spectrometer, increases with system size and is consistent with the buildup of collective flow for larger systems. The target dependence of both the yields and inverse slopes is stronger for the sulphur beam suggesting the increased importance of secondary rescattering for SA reactions. The rapidity density, dN/dy, of both K+ and K- increases more rapidly with system size than for pi+ in a similar rapidity region. This trend continues with increasing centrality, and according to RQMD, it is caused by secondary reactions between mesons and baryons. The K-/K+ ratio falls with increasing system size but more slowly than the pbar/p ratio. The pi-/pi+ ratio is close to unity for all systems. From pBe to SPb the K+/p ratio decreases while K-/pbar increases and ({K+*K-}/{p*pbar})**1/2 stays constant. These data suggest that as larger nuclei collide, the resulting system has a larger transverse expansion, baryon density and an increasing fraction of strange quarks

    System Size and Energy Dependence of Jet-Induced Hadron Pair Correlation Shapes in Cu+Cu and Au+Au Collisions at sqrt(s_NN) = 200 and 62.4 GeV

    Get PDF
    We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and semi-central collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.Comment: 464 authors from 60 institutions, 6 pages, 3 figures, 2 tables. Submitted to Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Improved Measurement of Double Helicity Asymmetry in Inclusive Midrapidity pi^0 Production for Polarized p+p Collisions at sqrt(s)=200 GeV

    Get PDF
    We present an improved measurement of the double helicity asymmetry for pi^0 production in polarized proton-proton scattering at sqrt(s) = 200 GeV employing the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The improvements to our previous measurement come from two main factors: Inclusion of a new data set from the 2004 RHIC run with higher beam polarizations than the earlier run and a recalibration of the beam polarization measurements, which resulted in reduced uncertainties and increased beam polarizations. The results are compared to a Next to Leading Order (NLO) perturbative Quantum Chromodynamics (pQCD) calculation with a range of polarized gluon distributions.Comment: 389 authors, 4 pages, 2 tables, 1 figure. Submitted to Phys. Rev. D, Rapid Communications. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore