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A B S T R A C T

Objectives: The Eighth Mount Hood Challenge (held in St. Gallen,
Switzerland, in September 2016) evaluated the transparency of model
input documentation from two published health economics studies
and developed guidelines for improving transparency in the reporting
of input data underlying model-based economic analyses in diabetes.
Methods: Participating modeling groups were asked to reproduce the
results of two published studies using the input data described in
those articles. Gaps in input data were filled with assumptions
reported by the modeling groups. Goodness of fit between the results
reported in the target studies and the groups’ replicated outputs was
evaluated using the slope of linear regression line and the coefficient
of determination (R2). After a general discussion of the results, a
diabetes-specific checklist for the transparency of model input was
developed. Results: Seven groups participated in the transparency
challenge. The reporting of key model input parameters in the two
studies, including the baseline characteristics of simulated patients,
treatment effect and treatment intensification threshold assumptions,

treatment effect evolution, prediction of complications and costs data,
was inadequately transparent (and often missing altogether). Not
surprisingly, goodness of fit was better for the study that reported
its input data with more transparency. To improve the transparency
in diabetes modeling, the Diabetes Modeling Input Checklist listing
the minimal input data required for reproducibility in most diabetes
modeling applications was developed. Conclusions: Transparency of
diabetes model inputs is important to the reproducibility and credi-
bility of simulation results. In the Eighth Mount Hood Challenge, the
Diabetes Modeling Input Checklist was developed with the goal of
improving the transparency of input data reporting and reproduci-
bility of diabetes simulation model results.
Keywords: computer modeling, diabetes, Mount Hood Challenge,
transparency.

Copyright & 2018, International Society for Pharmacoeconomics and
Outcomes Research (ISPOR). Published by Elsevier Inc.

Introduction

The use of economic simulation modeling tools to support
decision making in the health care setting is widespread and
necessary [1,2]. This is especially true for chronic and progressive

diseases such as diabetes mellitus (DM), for which the time
horizon of interest for decision making is lifetime and thus
beyond the time and resource constraints of clinical trials. Health
economic modeling provides a unique opportunity to capture the
health and cost consequences of new interventions over the
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relevant time horizon as well as across all comparators of interest
to decision makers.

To inform the allocation of resources, models informing such
decisions must be clinically credible and valid for the populations
and jurisdictions of interest. This can be achieved by reporting
models in a transparent manner and testing their internal and
external validity. This was emphasized in the International
Society for Pharmacoeconomics and Outcomes Research
and the Society for Medical Decision Making (ISPOR-SMDM)
Modeling Good Research Practices [2], which advocated for
“sufficient information to enable the full spectrum of readers to
understand a model’s accuracy, limitations, and potential appli-
cations at a level appropriate to their expertise and needs” [3],
and in the DM-specific American Diabetes Association (ADA)
guidelines for computer modeling [4], which encouraged report-
ing “in sufficient detail to reproduce the model and its results” [4].
The Second Panel on Cost-Effectiveness in Health and Medicine
[5] similarly advocated transparency, although in a more limited
manner.

The main focus of these guidelines is on the transparency of
model structure, rather than on the assumptions and data used in
simulating an individual application (e.g., population characteristics
at baseline and the assumed nature and duration of treatment
effects). A model with a fully transparent (and internally and
externally valid) structure is not sufficient to reproduce the results
of any individual simulation. To achieve this, one must also know
what assumptions and input data were included. In the spirit of the
Turing test [6] of a machine’s ability to exhibit intelligent behavior,
we have constructed a hypothetical thought experiment in which
two isolated users have access to the same computer simulation
model. A simulation would be regarded as transparent if one of the
users was able to produce a set of instructions of the simulation they
undertook that was sufficiently detailed and comprehensive to allow
the other user to implement them and produce identical results
using the same model. The ISPOR Consolidated Health Economic
Evaluation Reporting Standards checklist [7] outlines many of the
items that should routinely be in an economic evaluation, and the
Philips checklist is a best practice guideline in model reporting [8].
Both include a range of items concerning application-specific input
data. They may, however, be overly general to satisfy the needs in
complicatedmultifactorial disease areas such as DM, and so we have
attempted to address this gap in the literature using the Mount Hood
diabetes simulation modeling network.

Initiated in 2000 by Andrew Palmer and Jonathan Brown at
Timberline Lodge, Mount Hood, OR [9–11], the Mount Hood
Challenge is a biennial congress in which as many as 10 DM
modeling groups have met to compare and contrast models,
methods, and data in the context of simulating standardized
treatment scenarios and discussing the results. In September
2016, DM modeling groups gathered in St. Gallen, Switzerland, for
the Eighth Mount Hood Challenge, with the aim of standardizing
the recording and documentation of simulation inputs and
communication of outputs in DM simulation modeling and
thereby promoting transparency.

Specifically, the aims of the 2016 Mount Hood Challenge were
twofold:

1. to evaluate transparency of key model inputs using two
published studies as examples; and

2. to develop a DM-specific checklist for transparency of input
data that can be used alongside general health economic
modeling guidelines to improve reproducibility of health eco-
nomic analyses in DM.

The present article summarizes the findings from the
first objective and how modelers built on these to develop a
series of DM-specific transparency recommendations addressing

the second aim. The resulting checklist can serve as a means of
improving consistency and transparency in diabetes simulation
models and provide a framework for developing similar stand-
ards in other disease areas.

Methods

The Eighth Mount Hood Challenge was advertised on the Mount
Hood Challenge Web site (https://www.mthooddiabeteschal
lenge.com/) and all known published diabetes modeling groups
were invited to participate. The meeting featured two exercises
using instructions provided before the meeting: a transparency
challenge on day 1 and a communicating outcomes challenge on
day 2. Modeling groups were encouraged to submit results for
both challenges. Over the course of 2 days, results were presented
and discussed, and paths to improvement were debated. A
representative from each of the modeling groups was invited to
participate on the third day to choose a topic for a meeting
proceedings article. The group chose to focus this article on the
transparency challenge only. For details of methods and results
of the communicating outcomes challenge, interested readers are
referred to the Mount Hood Challenge Web site [12].

The Transparency Challenge

Model transparency, “the extent to which interested parties can
review a model’s structure, equations, parameter values, and
assumptions” [3], is often poor in published economic evalua-
tions, particularly for complex diseases such as DM [4]. More than
10 years after the ADA guidelines promoted increased trans-
parency, this is the first time diabetes modeling groups have
attempted to answer the questions “How reproducible are pub-
lished simulation modeling studies?” and “What is the best way
to describe a simulation so that it can be reproduced?”

The modeling groups were assigned two preselected pub-
lished economic modeling studies in DM [13,14] (see instructions
in Appendix 1 in Supplemental Materials found at https://doi.org/
10.1016/j.jval.2018.02.002). The first transparency challenge was
to replicate the Baxter et al. [13] study, which used the IQVIA-
Core Diabetes Model (IQVIA-CDM) to estimate the impact of
modest and achievable improvements in glycemic controls on
cumulative incidences of microvascular and macrovascular com-
plications and the costs in adults with type 1 (T1DM) or type 2 DM
(T2DM) in the UK system [13]. This transparency challenge
focused on simulating the T2DM results.

The second transparency challenge was to replicate the UK
Prospective Diabetes Study 72 (UKPDS 72), which used the UKPDS
Outcomes Model (UKPDS-OM) version 1 to evaluate the cost
utility of intensive blood glucose (conventional vs. intensive
blood glucose control with insulin or sulphonylureas, and con-
ventional vs. intensive blood glucose control with metformin in
overweight patients) and blood pressure control (less tight blood
pressure control vs. tight blood pressure control with angioten-
sin-converting enzyme inhibitors or β-blockers in hypertensive
patients) in T2DM [14]. This transparency challenge focused on
the comparison of intensive versus conventional blood glucose
control in the main randomization.

Modeling groups were asked to use data provided in the study
publications including supplementary appendices [13] as inputs
into their models and replicate the study analyses. When critical
data could not be found in the study publication, they were asked
to record assumptions required to fill those data gaps. Simulation
results were not blinded. Each group submitted results in
advance of the congress.

The data gaps reported by each group were summarized in a
tabular format and compared and contrasted during meeting
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proceedings. Detailed results for costs and cumulative incidences
were presented in tables by each model group for each challenge.
Agreement between the replicated and original study results was
evaluated using scatterplots.

Results

Short biographies of the 10 modeling groups that participated in
the Eighth Mount Hood Challenge can be found in Appendix 2 in
Supplemental Materials found at https://doi.org/10.1016/j.jval.2018.
02.002. This article reports results of the modeling groups that
submitted simulation results for the transparency challenges and
who agreed to publication in this journal. It should be noted that
other modeling groups were involved in the Eighth Mount Hood
Challenge and results for the communicating outcomes challenges
can be found on the Mount Hood Challenge Web site [12]. Groups
were asked to document all their assumptions made in the trans-
parency challenges. These were detailed in the meeting program,
also available from the Mount Hood Challenge Web site [15].

Transparency Challenge 1: Reproducing Baxter et al. [13]

Five modeling groups participated in the Baxter challenge: the
Cardiff model, the Economics and Health Outcomes Model of
T2DM (ECHO-T2DM), the Medical Decision Modeling Inc.—
Treatment Transitions Model (MDM-TTM), the Michigan Model
for Diabetes (MMD) model, and the IQVIA-CDM. All groups
presented simulation results with the exception of the MMD
group, which submitted only a document summarizing identified
input data gaps. The necessary input data that were not found in

the study publications as reported by modeling groups are
summarized in Appendix 3 in Supplemental Materials found at
http://doi.org/10.1016/j.jval.2018.02.002, along with assumptions
made and alternative data sources used to fill these gaps. All
modeling groups documented a lack of transparency in reporting
model inputs in the Baxter study, including important deficien-
cies such as baseline patient characteristics, treatment effects,
and glycated hemoglobin (HbA1c) evolution, thereby forcing
modeling groups to make a host of assumptions to fill these
gaps. These assumptions differed between groups and contrib-
uted to the diverse results. For example, for effect evolution, the
Cardiff modeling group assumed that HbA1c was maintained
at 7.5% when patients reached this level and the comparator
group followed a natural HbA1c progression. The ECHO-T2DM
group assumed no evolution in HbA1c or other biomarkers,
the IQVIA-CDM modeling group used data from UKPDS 68 for
HbA1c evolution [16], and the MDM-TTM modeling group used
its default treatment regimen.

Results of the replication analyses from each modeling group
and the original study results are presented in Table 1 for the cost
reductions and in Table 2 for the number of complications
avoided, over time and by baseline HbA1c subgroup. None of the
model results consistently matched the Baxter et al. study
results, including the replication using the same IQVIA-CDM
underlying the Baxter et al. study results (but without access to
unpublished parameters). The scatterplots, shown in Figure 1,
confirm discordance between replicated and original results.
The IQVIA-CDM modeling group generally overestimated the
cost reductions, and other modeling groups generally under-
estimated the cost reductions, yielding a best-fitting regression
line (intercept suppressed) that indicates general underprediction

Table 1 – Average cost reductions per individual in the UK T2DM population estimated from the Baxter et al.
[13] study and by participating modeling groups.

Baseline HbA1c Baxter study Participating modeling groups

Cardiff model ECHO-T2DM MDM-TTM IQVIA-CDM

o59 mmol/mol (7.5%)

5 y £83 £16 £154 £7 £13

10 y £317 £73 £418 £174 £151

15 y £682 £179 £644 £353 £605

20 y £1078 £307 £838 £484 £1283

25 y £1280 £422 £911 £521 £1799

459 mmol/mol (7.5%) to 64 mmol/mol (8.0%)

5 y £132 £26 £170 £60 £9

10 y £449 £104 £457 £208 £317

15 y £995 £235 £658 £337 £1069

20 y £1510 £385 £860 £379 £1906

25 y £1678 £518 £976 £324 £2503

464 mmol/mol (8.0%) to 75 mmol/mol (9.0%)

5 y £138 £68 £157 £83 -£16

10 y £607 £201 £412 £218 £294

15 y £1366 £384 £651 £329 £1198

20 y £1999 £580 £869 £331 £2440

25 y £2223 £748 £942 £236 £3810

475 mmol/mol (9.0%)

5 y £105 £160 £150 £146 £169

10 y £622 £402 £427 £372 £1019

15 y £1274 £697 £750 £561 £2442

20 y £1591 £993 £923 £584 £4255

25 y £1559 £1231 £1088 £476 £5590

ECHO-T2DM, Economics and Health Outcomes Model of T2DM; MDM-TTM, Medical Decision Modeling Inc.—Treatment Transitions Model;

IQVIA-CDM, IQVIA-CORE Diabetes Model; T2DM, type 2 diabetes mellitus.
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(slope ¼ 0.71), with an R2 of 0.52. The fit for number of compli-
cations avoided is similarly underestimated with an R2 of 0.35.

Transparency Challenge 2: Reproducing UKPDS 72 [14]

Seven modeling groups participated in the UKPDS 72 challenge
and consented to publication: the Cardiff model, the ECHO-T2DM
model, the MDM-TTM, the Modelling Integrated Care for Diabetes
based on Observational data model, the MMD model, the IQVIA-
CDM, and the UKPDS-OM (versions 1 and 2). All groups presented
their challenge results except for the MMD group. Of note, both
UKPDS-OM versions 1 and 2 participated in this exercise, providing
an interesting contrast. UKPDS-OM version 1 was used in the
UKPDS 72 study, and so provided a clean test of how reproducible
the results are from the inputs provided in the publication,
whereas the results from UKPDS-OM version 2 provided a further
examination of how much the newer equations differ in estimates
of health and risk in a controlled environment. The necessary
input data that were not found in the study publications as
reported by modeling groups, along with their assumptions and
alternative data sources used to fill these gaps, are documented in
Appendix 4 in Supplemental Materials found at https://doi.org/10.
1016/j.jval.2018.02.002. All modeling groups identified gaps in the
reporting of UKPDS 72, including absence of information on base-
line patient characteristics, initial treatment effects, HbA1c evolu-
tion, and treatment use over time. Modeling groups generally
sourced missing information from other UKPDS publications,
however, with presumably little bias. For example, all groups
sourced baseline characteristics from UKPDS 33 [17]. Different
assumptions regarding treatment effects, risk factor progression,
and unit costs were used.

Results of the replication analyses for each modeling group
and the original study results are presented in Table 3. The
Cardiff model most closely estimated costs; the IQVIA-CDM
overestimated costs and the other models underestimated costs.
In general, there was a good agreement of quality-adjusted life-
years (QALYs) between the replicated and the original study
results, although lifetime QALYs estimated by the Modelling
Integrated Care for Diabetes based on Observational data model
were considerably lower than those reported in UKPDS 72. The
scatterplots (Fig. 2) confirm good agreement in results on QALYs,
but not on costs, although the R2 values were high in both cases
(QALYs 0.97, costs 0.89).

The Diabetes Modeling Input Checklist

The representatives of the modeling groups met on the morning
of September 19, 2016, to translate the findings of the trans-
parency challenge into recommendations for improved simula-
tion input data reporting. The Diabetes Modeling Input Checklist
was developed with the intention that it should be used for future
publications of long-term modeling economic evaluations in
diabetes and possibly to be adopted by journals when reviewing
submissions. The representatives agreed on the following:

1. There are glaring omissions in the documentation of inputs in
published studies (not just the two examples considered in the
challenges) that limit reproducibility. The possible reasons are
multiple, including publication word limit, lack of thorough-
ness, and intentional lack of transparency.

Table 2 – Total complications avoided in the UK T2DM population estimated from the Baxter et al. [13] study
and by participating modeling groups.

Complications Baxter study Participating modeling groups

Cardiff model ECHO-T2DM MDM-TTM IQVIA-CDM

Eye disease

5 y 56,777 12,046 403,839 5,045 19,530

10 y 141,792 19,764 684,490 15,825 129,321

15 y 224,992 26,477 837,948 27,536 269,037

20 y 261,069 31,865 898,574 34,382 399,513

25 y 250,768 34,701 942,337 36,514 456,766

Renal disease

5 y 38,151 25 14,712 1,652 13,489

10 y 95,975 40 26,794 3,724 77,000

15 y 152,114 47 35,785 −1,982 164,851

20 y 174,601 52 41,835 −14,083 255,038

25 y 164,187 59 47,992 −27,836 294,751

Foot ulcers, amputations, and neuropathy

5 y 122,013 15,847 78,367 3,934 9,343

10 y 275,011 27,678 163,711 15,975 162,908

15 y 389,723 35,548 229,138 33,422 286,712

20 y 412,535 43,458 265,308 47,265 354,630

25 y 373,629 49,324 292,704 54,802 347,470

Cardiovascular disease

5 y 27,991 23,124 46,472 13,303 5,569

10 y 61,893 50,804 97,207 40,358 40,431

15 y 97,890 115,335 132,514 64,231 91,852

20 y 106,416 92,475 147,792 73,479 146,743

25 y 82,387 112,709 149,673 68,224 168,866

ECHO, Economics and Health Outcomes Model of T2DM; MDM-TTM, Medical Decision Modeling Inc.—Treatment Transitions Model; IQVIA-

CDM, IQVIA-CORE Diabetes Model; T2DM, type 2 diabetes mellitus.
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2. Existing checklists [3,7,18] are general and inadequate for
informing fully transparent reporting for complex DM simu-
lation modeling with its extreme input data burden.

3. There is a need for a DM-specific checklist.
4. Ideally, a DM-specific checklist should be simple (specifying a

minimum required amount of information) and complement
(not supersede) existing guidelines.

5. A general consensus should be formed on the specific input
items for DM models that should be included in the checklist
(note that this did not include a discussion about what
numerical values for input may or may not be best).

The Diabetes Modeling Input Checklist is presented in Table 4
and the main summary is given herein.

Fig. 1 – Comparisons of cumulative complications avoided and cost reductions vs. the Baxter et al. [13] study. Each scatterplot
denotes a comparison of results from the modeling groups and those from the Baxter study. The dotted line is the fitted
regression line of all comparisons, and the solid line denotes hypothetical perfect agreement between values generated from
the modeling groups and those from the original study, that is, R2

¼ 1 and line intersecting the origin (0). Overall, there is a
reasonable good agreement between the results from the modeling groups and those from the Baxter study. The slopes of the
regression line are 0.66 and 0.71 and the R2 are 0.35 and 0.52 for the comparisons of complications avoided and cost
reductions, respectively. ECHO, Economics and Health Outcomes Model of T2DM; MDM-TTM, Medical Decision Modeling Inc.
—Treatment Transitions Model; IQVIA-CDM, IQVIA-Core Diabetes Model; T2DM, type 2 diabetes mellitus.

Table 3 – Undiscounted within-trial total costs and total QALYs as well as differences for conventional vs.
intensive blood glucose control estimated from the UKPDS 72 [14] and other modeling groups.

Simulation
outcomes

UKPDS
72

Participating modeling groups

Cardiff
model

ECHO-
T2DM

MDM-
TTM

MICADO IQVIA-
CDM

UKPDS-OM
version 1

UKPDS-OM
version 2

Total costs*

Conventional 26,516 26,996 14,806 13,094 13,288 34,523 21,154 19,428

Intensive 27,865 28,936 16,733 13,529 14,366 32,986 23,121 21,689

Differences in total

cost

1,349 1,940 1,927 435 1,078 −1,537 1,967 2,261

Within-trial QALYs

Conventional 7.62 7.64 7.96 6.94 NR 7.27 NR NR

Intensive 7.72 7.67 7.99 6.96 NR 7.32 NR NR

Differences in within-

trial QALYs

0.10 0.03 0.03 0.02 NR 0.05 NR NR

Total QALYs

Conventional 16.35 17.23 15.94 16.75 9.22 18.13 16.59 19.14

Intensive 16.62 17.47 16.11 16.94 9.50 18.45 16.79 19.29

Differences in total

QALYs

0.27 0.24 1.17 0.19 0.28 0.32 0.20 0.15

ECHO, Economics and Health Outcomes Model of T2DM; MDM-TTM, Medical Decision Modeling Inc.—Treatment Transitions Model; MICADO,

Modelling Integrated Care for Diabetes based on Observational data; NR, not reported; QALY, quality-adjusted life-year; IQVIA-CDM, IQVIA-

CORE Diabetes Model; T2DM, type 2 diabetes mellitus; UKPDS, UK Prospective Diabetes Study; UKPDS-OM, UKPDS Outcomes Model.
* Costs are presented in 2004 British pounds.
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Simulation Cohort

Baseline patient characteristics of the simulated cohort should be
clearly stated, including age, sex, ethnicity/race, body mass index
(BMI)/weight, duration of diabetes, baseline HbA1c, lipids and
blood pressure levels, smoking status, comorbidities, physical
activity, and baseline treatments (aspirin, statins, angiotensin-
converting enzyme inhibitors/angiotensin II receptor blockers,
and/or glucose-lowering treatments). Baseline characteristics
should be presented in a tabular format as mean with SD or as
proportion, as appropriate whenever possible. In addition, the
type of distribution of the baseline characteristics should be
reported in the table.

Treatment Interventions

First, the chosen treatment(s) and treatment algorithm for blood
glucose control or treating hypertension, dyslipidemia, excess
weight, or any other relevant condition in the comparator and
intervention should all be specified. Second, it is helpful to
specify the initial impact of treatment(s) on baseline biomarkers.
Third, it is important to state the rules for treatment intensifica-
tion, for example, the threshold HbA1c (or blood pressure, lipid,
BMI, or estimated glomerular filtration rate [eGFR]) level that
triggers a change in treatment and the new treatment regimen.
Moreover, it should be specified whether the change in treatment
is an addition or substitution to the previous treatment. Fourth,
modelers should also specify in detail the set of long-term effects,
adverse effects, treatment adherence and persistence, and any
assumptions on legacy effects (i.e., residual treatment effects
after the discontinuation of a treatment) that are considered in
the model. In addition, it is helpful to describe the direct and
indirect linkages between treatment effects and primary

outcomes including health outcomes, costs, and effectiveness
(e.g., HbA1c affects stroke, myocardial infarction, retinopathy, and
nephropathy risks directly, and indirectly affects mortality
through its impact on events specific to cardiovascular disease
and associated mortality). Finally, it is important to include the
trajectory of biomarkers (e.g., HbA1c, lipids, blood pressure, BMI,
eGFR, and smoking) and any other factors that are affected by
interventions and have an impact on modeled patient health
outcomes.

Costs

All state-specific and treatment-specific costs should be detailed
in a separate section and may be differentiated by acute event
costs in the first year and ongoing costs in subsequent years. The
costs should include costs of intervention themselves as applied
in the model and other costs such as adverse events, complica-
tion management, and diagnostics if applied. Complication costs
should consider the timing of the event. For example, macro-
vascular complications often have a high cost at the time of the
event and lower follow-up management costs thereafter. If the
evaluation is from the societal perspective, it should specify
assumptions related to indirect costs such as foregone produc-
tivity and any other costs (e.g., transportation). Moreover, the
type of productivity losses (i.e., absenteeism, presentism, or early
retirement) and the methods used to evaluate productivity losses
should be stated in the costs methods section.

Health State Utilities

Methodological approaches to estimating utility in the presence
of multiple comorbidities include alternative options including

Fig. 2 – Comparisons of total costs and QALYs vs. the UKPDS 72 study [14]. Each scatterplot denotes a comparison of results
from the modeling groups and those from the UKPDS 72 study. The dotted line is the fitted linear regression line, and the solid
line denotes hypothetical perfect agreement between values generated from the modeling groups and those from the original
study, that is, R2

¼ 1 and line intersecting the origin (0). Overall, there is a good agreement between the results from the
modeling groups and those from the UKPDS 72 study. The slopes of the regression line are 0.75 and 0.98 and the R2 are 0.89
and 0.97 for the comparisons of total costs and QALYs, respectively. ECHO, Economics and Health Outcomes Model of T2DM;
MDM-TTM, Medical Decision Modeling Inc.—Treatment Transitions Model; QALY, quality-adjusted life-year; IQVIA-CDM,
IQVIA-Core Diabetes Model; T2DM, type 2 diabetes mellitus; UKPDS, UK Prospective Diabetes Study; UKPDS-OM, UKPDS
Outcomes Model.
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the “minimum,” “multiplicative,” or other approaches. For exam-
ple, the minimum approach uses the value of the condition with
the lowest individual utility score, whereas the multiplicative
approach uses the arithmetic product of utility scores as a
proportion of full health. It should be clearly stated which
method is used to adjust the health state utilities of multiple
comorbidities.

General Model Characteristics

There are other factors that may have a substantive impact on
model transparency. First, the choice of the country-specific life
table for all-cause mortality should be clearly stated in the
Methods section, and when a specific event-related mortality is
incorporated, it must be stated. Second, it is important to docu-
ment the source and details of risk equations used in the model.
Finally, if using a microsimulation model, authors should report
the number of Monte-Carlo simulations performed per individual
simulated and justify that choice. When performing probabilistic
sensitivity analysis, it is important to document and justify
which components of model uncertainty are being propagated
to the model outputs (e.g., risk equations, risk factor trajectories,

and treatment effect), the methods and assumptions used to
propagate the uncertainty, and the number of Monte-Carlo
simulations used to reflect parameter uncertainty.

Discussion

ISPOR-SMDM emphasized the importance of transparency for
engendering confidence and credibility for health economic
decision modeling [3], and the ADA advocates a similar approach
for diabetes modeling specifically [4]. The main theme of the
Eighth Mount Hood Challenge was transparency and reproduci-
bility of computer simulation models in diabetes. The trans-
parency challenge illustrated substantial difficulties in
reproducing study results using the published input data. The
modeling groups responded to data gaps with widely varying
assumptions, yielding large differences in some outcomes. Differ-
ences in the degree of reproducibility of the Baxter et al. [13] and
the UKPDS 72 [14] studies were consistent with the comprehen-
siveness of inputs provided. The results indicate that substantial
shortcomings remain, providing impetus for the modeling groups
to jointly develop a DM-specific input reporting checklist.

Table 4 – Checklist of reporting model input in diabetes health economics studies.

Model input Checkbox Comments
(e.g., justification
if not reported)

Simulation cohort

Baseline age

Ethnicity/race

BMI/weight

Duration of diabetes

Baseline HbA1c, lipids, and blood pressure

Smoking status

Comorbidities

Physical activity

Baseline treatment

Treatment intervention

Type of treatment

Treatment algorithm for HbA1c evolution over time

Treatment algorithm for other conditions (e.g., hypertension, dyslipidemia, and excess weight)

Treatment initial effects on baseline biomarkers

Rules for treatment intensification (e.g., the cutoff HbA1c level to switch the treatment, the type of

new treatment, and whether the rescue treatment is an addition or substitution to the standard

treatment)

Long-term effects, adverse effects, treatment adherence and persistence, and residual effects after

the discontinuation of the treatment

Trajectory of biomarkers, BMI, smoking, and any other factors that are affected by treatment

Cost

Differentiated by acute event in first year and subsequent years

Cost of intervention and other costs (e.g., managing complications, adverse events, and

diagnostics)

Please report unit prices and resource use separately and give information on discount rates

applied

Health state utilities

Operational mechanics of the assignment of utility values (i.e., utility- or disutility-oriented)

Management of multihealth conditions

General model characteristics

Choice of mortality table and any specific event-related mortality

Choice and source of risk equations

If microsimulation: number of Monte-Carlo simulations conducted and justification

Components of model uncertainty being simulated (e.g., risk equations, risk factor trajectories,

costs, and treatment effect); number of simulations and justification

BMI, body mass index; HbA1c, glycated hemoglobin.
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A large number of inputs are required for simulation modeling
in DM. Full transparency requires considerable resources of both
modelers and the consumers of modeling results, which creates a
“cost of transparency.” The Diabetes Modeling Input Checklist
represents a pragmatic approach, focusing on parameters and
assumptions that are influential in typical applications. It is
important to note that models may differ substantially in struc-
ture and input variables. Although some inputs may be specific to
a particular model, such as the renal risk factor eGFR, it is
important that modelers transparently document the assump-
tions made around the level and time path of that risk factor.
Note, however, that additional items important to any specific
application should naturally be reported even if not explicitly
mentioned in the checklist. Optimizing transparency of inputs to
simulation will assist in understanding the assumptions used in
projections and will facilitate a better understanding of why
model results may not be realized if future conditions change
in an unforeseen way. In addition, with an increased use of this
checklist in future health economic modeling studies, we plan to
test whether this checklist increases transparency of diabetes
model inputs at an upcoming Mount Hood Challenge.

This checklist is not free-standing, but should be used to
complement the more general guidelines such as the ISPOR-
SMDM guidelines for model transparency [3], the Philips guide-
lines [18], the ISPOR Consolidated Health Economic Evaluation
Reporting Standards guidelines for modeling study reporting [7],
and the ADA guidelines for modeling of diabetes and its compli-
cations [4]. The Mount Hood Challenge Modeling Group recom-
mends routine use of the Diabetes Modeling Input Checklist.
Modelers should document simulation inputs in line with the
checklist and submit these as supplementary materials with
publications. Journal editors and reviewers should permit (even
require) the inclusion of the checklist with any DM-related
modeling publications.

Conclusions

In previous Mount Hood Challenges, modeling groups worked
together to compare outcomes for hypothetical diabetes cohorts
and interventions [9] and to compare outcomes simulated from
health economic models to those from real-world data [10,11]. In
the latest Mount Hood Challenge, the potential shortcomings of
poor simulation input transparency were clearly demonstrated,
leading to these consensus recommendations intended to promote
transparency. Increased transparency can improve both the cred-
ibility and the clarity of model-based economic analyses. Although
the checklist we propose is specific to DM, it will hopefully inspire
modelers in similarly complex fields to promote transparency of
model inputs to improve the reliability of model outputs.

Source of financial support: No funding was received for this
article.
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