442 research outputs found

    Soliton interaction in the presence of a weak non-soliton component

    No full text
    We study both experimentally and theoretically soliton interaction in the presence of a weak non-soliton component and show that the existence of a frequency shifted cw wave results in a temporal shift of the soliton

    Femtosecond harmonically mode-locked fibre laser with time jitter below 1ps

    No full text
    We have made an experimental study of the time jitter in a harmonic passively mode-locked fiber soliton ring laser. We demonstrate that jitter as low as 600 fs (100-550 Hz), which is less than the soliton pulse width, can be achieved at a repetition frequency of 463 MHz. The results support the suggestion that the stability of the laser is dependent on the long-range soliton interaction through the excitation of acoustic waves that is induced by the propagating pulses

    Soliton compression in a nonlinear amplifying loop mirror

    No full text
    We have experimentally demonstrated the ability of the NALM to compress solitons with a low fraction of non-soliton component. The principle of operation of an all-fibre tunable source of femtosecond pulses has been shown

    Unlimited soliton propagation and noise suppression in a system with spectral filtering and saturable absorption

    No full text
    We show that soliton propagation is ultimately stable to both amplitude and frequency noise in a system employing spectral filtering and saturable absorption. In such a system, the amplification period may be increased to 3-5 dispersion lengths for 10 dB linear losses between amplifiers

    Increased amplifier spacing in a soliton system using quantum well saturable absorbers and spectral filtering

    No full text
    The spacing between optical amplifiers in a long-haul soliton system may be increased to 100 km by using only passive quantum-well saturable absorbers and narrow-band filters for soliton control. After transmission over 9000 km at 10 Gbits/s, the effects of soliton-soliton interaction and Gordon-Haus jitter in the proposed system yield bit error rates of better than 10-9

    Acceleration Schemes for Ab-Initio Molecular Dynamics and Electronic Structure Calculations

    Full text link
    We study the convergence and the stability of fictitious dynamical methods for electrons. First, we show that a particular damped second-order dynamics has a much faster rate of convergence to the ground-state than first-order steepest descent algorithms while retaining their numerical cost per time step. Our damped dynamics has efficiency comparable to that of conjugate gradient methods in typical electronic minimization problems. Then, we analyse the factors that limit the size of the integration time step in approaches based on plane-wave expansions. The maximum allowed time step is dictated by the highest frequency components of the fictitious electronic dynamics. These can result either from the large wavevector components of the kinetic energy or from the small wavevector components of the Coulomb potential giving rise to the so called {\it charge sloshing} problem. We show how to eliminate large wavevector instabilities by adopting a preconditioning scheme that is implemented here for the first-time in the context of Car-Parrinello ab-initio molecular dynamics simulations of the ionic motion. We also show how to solve the charge-sloshing problem when this is present. We substantiate our theoretical analysis with numerical tests on a number of different silicon and carbon systems having both insulating and metallic character.Comment: RevTex, 9 figures available upon request, to appear in Phys. Rev.

    Quantum well devices for mode-locking fibre lasers

    No full text
    The generation of picosecond duration pulses in the 1.55 micron wavelength region is of considerable interest for applications related to telecommunications. In the 1.06 micron region, picosecond pulses are useful for spectroscopy and the electro-optic sampling of high speed integrated circuits [I]. Passive mode-locking of fibre lasers using multiple quantum well (MQW) material can provide optical pulses with picosecond durations in both these wavelength regions. The optical confinement and long lengths available, give doped fibre lasers high gain together with flexibility in physical configuration. The use of QWs with light incident perpendicular to the epitaxial layers, as passive saturable absorbers to mode-lock these lasers, is attractive because of their polarisation insensitivity and the wide range of wavelengths available. The semiconductor sample operating wavelength is governed by the materials, their compositions and dimensions used. In fibre, gain is provided in the 1.55 micron region by doping with Erbium whilst Neodymium is used for operation in the 1.06 micron region. By integrating the saturable absorber and laser-cavity end mirror into a single semiconductor device we have generated picosecond pulses in very simple cavity configurations

    Basis Functions for Linear-Scaling First-Principles Calculations

    Full text link
    In the framework of a recently reported linear-scaling method for density-functional-pseudopotential calculations, we investigate the use of localized basis functions for such work. We propose a basis set in which each local orbital is represented in terms of an array of `blip functions'' on the points of a grid. We analyze the relation between blip-function basis sets and the plane-wave basis used in standard pseudopotential methods, derive criteria for the approximate equivalence of the two, and describe practical tests of these criteria. Techniques are presented for using blip-function basis sets in linear-scaling calculations, and numerical tests of these techniques are reported for Si crystal using both local and non-local pseudopotentials. We find rapid convergence of the total energy to the values given by standard plane-wave calculations as the radius of the linear-scaling localized orbitals is increased.Comment: revtex file, with two encapsulated postscript figures, uses epsf.sty, submitted to Phys. Rev.

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
    • …
    corecore