463 research outputs found

    A New Composite Restorative Based on a Hydrophobic Matrix

    Full text link
    A hydrophobic restorative composite based on a fluorocarbon analog of an alkyl methacrylate and a bisphenol adduct was formulated into a one-paste system, which polymerized in the presence of blue light. Physical, mechanical, and water-related properties were determined. High contact angles and low water sorption were shown by the experimental composite. Capillary penetration of oral fluids around restorations, therefore, could be prevented in the presence of this highly hydrophobic surface. The physical and mechanical properties of the experimental composite were either comparable to or somewhat less favorable than commercial Bis-GMA composites.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67042/2/10.1177_00220345790580100401.pd

    A theoretical and empirical investigation of nutritional label use

    Get PDF
    Due in part to increasing diet-related health problems caused, among others, by obesity, nutritional labelling has been considered important, mainly because it can provide consumers with information that can be used to make informed and healthier food choices. Several studies have focused on the empirical perspective of nutritional label use. None of these studies, however, have focused on developing a theoretical economic model that would adequately describe nutritional label use based on a utility theoretic framework. We attempt to fill this void by developing a simple theoretical model of nutritional label use, incorporating the time a consumer spends reading labels as part of the food choice process. The demand equations of the model are then empirically tested. Results suggest the significant role of several variables that flow directly from the model which, to our knowledge, have not been used in any previous empirical work

    <i>In vivo</i> gene silencing following non-invasive siRNA delivery into the skin using a novel topical formulation

    Get PDF
    AbstractTherapeutics based on short interfering RNAs (siRNAs), which act by inhibiting the expression of target transcripts, represent a novel class of potent and highly specific next-generation treatments for human skin diseases. Unfortunately, the intrinsic barrier properties of the skin combined with the large size and negative charge of siRNAs make epidermal delivery of these macromolecules quite challenging. To help evaluate the in vivo activity of these therapeutics and refine delivery strategies we generated an innovative reporter mouse model that predominantly expresses firefly luciferase (luc2p) in the paw epidermis — the region of murine epidermis that most closely models the tissue architecture of human skin. Combining this animal model with state-of-the-art live animal imaging techniques, we have developed a real-time in vivo analysis work-flow that has allowed us to compare and contrast the efficacies of a wide range nucleic acid-based gene silencing reagents in the skin of live animals. While inhibition was achieved with all of the reagents tested, only the commercially available “self-delivery” modified Accell-siRNAs (Dharmacon) produced potent and sustained in vivo gene silencing. Together, these findings highlight just how informative reliable reporter mouse models can be when assessing novel therapeutics in vivo. Using this work-flow, we developed a novel clinically-relevant topical formulation that facilitates non-invasive epidermal delivery of unmodified and “self-delivery” siRNAs. Remarkably, a sustained >40% luc2p inhibition was observed after two 1-hour treatments with Accell-siRNAs in our topical formulation. Importantly, our ability to successfully deliver siRNA molecules topically brings these novel RNAi-based therapeutics one-step closer to clinical use

    Chromosome 11q13.5 variant associated with childhood eczema:an effect supplementary to filaggrin mutations

    Get PDF
    BackgroundAtopic eczema is a common inflammatory skin disease with multifactorial etiology. The genetic basis is incompletely understood; however, loss of function mutations in the filaggrin gene (FLG) are the most significant and widely replicated genetic risk factor reported to date. The first genome-wide association study in atopic eczema recently identified 2 novel genetic variants in association with eczema susceptibility: a single nucleotide polymorphism on chromosome 11q13.5 (rs7927894) and a single nucleotide polymorphism (rs877776) within the gene encoding hornerin on chromosome 1q21.ObjectiveTo test the association of these 2 novel variants with pediatric eczema and to investigate their interaction with FLG null mutations.MethodsCase-control study to investigate the association of rs7927894, rs877776 and the 4 most prevalent FLG null mutations with moderate-severe eczema in 511 Irish pediatric cases and 1000 Irish controls. Comprehensive testing for interaction between each of the loci was also performed.ResultsThe association between rs7927894 and atopic eczema was replicated in this population (P = .0025, χ2 test; odds ratio, 1.27; 95% CI, 1.09-1.49). The 4 most common FLG null variants were strongly associated with atopic eczema (P = 1.26 × 10−50; combined odds ratio, 5.81; 95% CI, 4.51-7.49). Interestingly, the rs7927894 association was independent of the well-established FLG risk alleles and may be multiplicative in its effect. There was no significant association between rs877776 and pediatric eczema in this study.ConclusionSingle nucleotide polymorphism rs7927894 appears to mark a genuine eczema susceptibility locus that will require further elucidation through fine mapping and functional analysis

    Array-based sequencing of filaggrin gene for comprehensive detection of disease-associated variants

    Get PDF
    The filaggrin gene (FLG) is essential for skin differentiation and epidermal barrier formation. FLG loss-of-function (LoF) variants are associated with ichthyosis vulgaris and the major genetic risk factor for developing atopic dermatitis (AD).1, 2, 3 Genetic stratification of patients with AD according to FLG LoF risk is a common practice for both research and clinical studies; however, few studies comprehensively sequence the entire FLG coding region. Most studies that include FLG genotyping have screened for common predominant LoF variants to report allele frequencies after full Sanger sequencing of a smaller batch of test patient samples or previously published data. This strategy potentially results in underreporting of the genetic contribution especially in ethnicities where FLG LoF variants are highly diverse.4 Distinct LoF variants have been reported for most ethnicities studied to date. For example, 2 predominant sequence variants (p.R501X and c.2282del4) make up approximately 80% of the mutation burden in northern Europeans,5 whereas in East Asian ethnicities, a larger FLG LoF mutation spectrum is found with fewer predominating variants.6, 7 However, routinely Sanger sequencing the entire FLG coding region for large cohorts is not always feasible, although desirable as it is essential to correctly stratify patients. To address this, we developed a robust and cost-effective high-throughput PCR-based method for analyzing the entire coding region of FLG using Fluidigm microfluidics technology and next-generation sequencing (NGS). We have applied this method to fully resequence cohorts of Chinese, Malay, and Indian patients with AD from the Singaporean population.ASTAR (Agency for Sci., Tech. and Research, S’pore)Published versio

    Skin microbiome prior to development of atopic dermatitis:early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year

    Get PDF
    Background: Disease flares of established atopic dermatitis (AD) are generally associated with a low-diversity skin microbiota and Staphylococcus aureus dominance. The temporal transition of the skin microbiome between early infancy and the dysbiosis of established AD is unknown. Methods: We randomly selected 50 children from the Cork Babies After SCOPE: Evaluating the Longitudinal Impact Using Neurological and Nutritional Endpoints (BASELINE) longitudinal birth cohort for microbiome sampling at 3 points in the first 6 months of life at 4 skin sites relevant to AD: the antecubital and popliteal fossae, nasal tip, and cheek. We identified 10 infants with AD and compared them with 10 randomly selected control infants with no AD. We performed bacterial 16S ribosomal RNA sequencing and analysis directly from clinical samples. Results: Bacterial community structures and diversity shifted over time, suggesting that age strongly affects the skin microbiome in infants. Unlike established AD, these patients with infantile AD did not have noticeably dysbiotic communities before or with disease and were not colonized by S aureus. In comparing patients and control subjects, infants who had affected skin at month 12 had statistically significant differences in bacterial communities on the antecubital fossa at month 2 compared with infants who were unaffected at month 12. In particular, commensal staphylococci were significantly less abundant in infants affected at month 12, suggesting that this genus might protect against the later development of AD. Conclusions: This study suggests that 12-month-old infants with AD were not colonized with S aureus before having AD. Additional studies are needed to confirm whether colonization with commensal staphylococci modulates skin immunity and attenuates development of AD

    Mutations in <em>GRHL2</em> result in an autosomal-recessive ectodermal dysplasia syndrome

    Get PDF
    Grainyhead-like 2, encoded by GRHL2, is a member of a highly conserved family of transcription factors that play essential roles during epithelial development. Haploinsufficiency for GRHL2 has been implicated in autosomal-dominant deafness, but mutations have not yet been associated with any skin pathology. We investigated two unrelated Kuwaiti families in which a total of six individuals have had lifelong ectodermal defects. The clinical features comprised nail dystrophy or nail loss, marginal palmoplantar keratoderma, hypodontia, enamel hypoplasia, oral hyperpigmentation, and dysphagia. In addition, three individuals had sensorineural deafness, and three had bronchial asthma. Taken together, the features were consistent with an unusual autosomal-recessive ectodermal dysplasia syndrome. Because of consanguinity in both families, we used whole-exome sequencing to search for novel homozygous DNA variants and found GRHL2 mutations common to both families: affected subjects in one family were homozygous for c.1192T>C (p.Tyr398His) in exon 9, and subjects in the other family were homozygous for c.1445T>A (p.Ile482Lys) in exon 11. Immortalized keratinocytes (p.Ile482Lys) showed altered cell morphology, impaired tight junctions, adhesion defects, and cytoplasmic translocation of GRHL2. Whole-skin transcriptomic analysis (p.Ile482Lys) disclosed changes in genes implicated in networks of cell-cell and cell-matrix adhesion. Our clinical findings of an autosomal-recessive ectodermal dysplasia syndrome provide insight into the role of GRHL2 in skin development, homeostasis, and human disease
    corecore