242 research outputs found

    Deconstruction and Gauge Theories in AdS_5

    Get PDF
    On a slice of AdS_5, despite having a dimensionful coupling, gauge theories can exhibit logarithmic dependence on scale. In this paper, we utilize deconstruction to analyze the scaling behavior of the theory, both above and below the AdS curvature scale, and shed light on position-dependent regularizations of the theory. We comment on applications to geometries other than AdS.Comment: 15 pages, 1 figur

    Pituitary blastoma: a pathognomonic feature of germ-line DICER1 mutations.

    Get PDF
    Individuals harboring germ-line DICER1 mutations are predisposed to a rare cancer syndrome, the DICER1 Syndrome or pleuropulmonary blastoma-familial tumor and dysplasia syndrome [online Mendelian inheritance in man (OMIM) #601200]. In addition, specific somatic mutations in the DICER1 RNase III catalytic domain have been identified in several DICER1-associated tumor types. Pituitary blastoma (PitB) was identified as a distinct entity in 2008, and is a very rare, potentially lethal early childhood tumor of the pituitary gland. Since the discovery by our team of an inherited mutation in DICER1 in a child with PitB in 2011, we have identified 12 additional PitB cases. We aimed to determine the contribution of germ-line and somatic DICER1 mutations to PitB. We hypothesized that PitB is a pathognomonic feature of a germ-line DICER1 mutation and that each PitB will harbor a second somatic mutation in DICER1. Lymphocyte or saliva DNA samples ascertained from ten infants with PitB were screened and nine were found to harbor a heterozygous germ-line DICER1 mutation. We identified additional DICER1 mutations in nine of ten tested PitB tumor samples, eight of which were confirmed to be somatic in origin. Seven of these mutations occurred within the RNase IIIb catalytic domain, a domain essential to the generation of 5p miRNAs from the 5' arm of miRNA-precursors. Germ-line DICER1 mutations are a major contributor to PitB. Second somatic DICER1 "hits" occurring within the RNase IIIb domain also appear to be critical in PitB pathogenesis

    Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits

    Full text link
    The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events

    Get PDF
    We present a measurement of the top quark pair ttbar production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1} of data collected by the DO detector at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), large missing transverse energy, and at least four jets, and extract the ttbar content of the sample based on the kinematic characteristics of the events. For a top quark mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1} (syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging

    Get PDF
    We present a measurement of the top quark pair (ttˉt\bar{t}) production cross section (σttˉ\sigma_{t\bar{t}}) in ppˉp\bar{p} collisions at s=1.96\sqrt{s}=1.96 TeV using 230 pb1^{-1} of data collected by the D0 experiment at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), missing transverse energy, and jets in the final state. We employ lifetime-based b-jet identification techniques to further enhance the ttˉt\bar{t} purity of the selected sample. For a top quark mass of 175 GeV, we measure σttˉ=8.61.5+1.6(stat.+syst.)±0.6(lumi.)\sigma_{t\bar{t}}=8.6^{+1.6}_{-1.5}(stat.+syst.)\pm 0.6(lumi.) pb, in agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let

    Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    The cross section for the inclusive production of isolated photons has been measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV and have pseudorapidity |eta|<0.9. The cross section is compared with the results from two next-to-leading order perturbative QCD calculations. The theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.

    Search for single top quark production in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    We present a search for electroweak production of single top quarks in the s-channel and t-channel using neural networks for signal-background separation. We have analyzed 230 pb1^{-1} of data collected with the D0 detector at the Fermilab Tevatron Collider at a center-of-mass energy of 1.96 TeV and find no evidence for a single top quark signal. The resulting 95% confidence level upper limits on the single top quark production cross sections are 6.4 pb in the s-channel and 5.0 pb in the t-channel.Comment: 9 pages, 4 figure

    Measurement of the WW production cross section in p anti-p collisions at s**(1/2) = 1.96 TeV

    Get PDF
    We present a measurement of the W boson pair-production cross section in p anti-p collisions at a center-of-mass energy of sqrt{s}=1.96 TeV. The data, collected with the Run II DO detector, correspond to an integrated luminosity of 224-252 pb^-1 depending on the final state (ee, emu or mumu). We observe 25 candidates with a background expectation of 8.1+/-0.6(stat)+/-0.6(syst)+/-0.5(lum) events. The probability for an upward fluctuation of the background to produce the observed signal is 2.3x10^-7, equivalent to 5.2 standard deviations.The measurement yields a cross section of 13.8+4.3/-3.8(stat)+1.2/-0.9(syst)+/-0.9(lum) pb, in agreement with predictions from the standard model.Comment: submitted to PR

    Measurement of the Lambda^0_b lifetime in the decay Lambda^0_b -> J/psi Lambda^0 with the D0 Detector

    Get PDF
    We present measurements of the Lambda^0_b lifetime in the exclusive decay channel Lambda^0_{b}->J/psi Lambda^0, with J/psi to mu+ mu- and Lambda^0 to p pi-, the B^0 lifetime in the decay B^0 -> J/psi K^0_S with J/psi to mu+ mu- and K^0_S to pi+ pi-, and the ratio of these lifetimes. The analysis is based on approximately 250 pb^{-1} of data recorded with the D0 detector in pp(bar) collisions at sqrt{s}=1.96 TeV. The Lambda^0_b lifetime is determined to be tau(Lambda^0_b) = 1.22 +0.22/-0.18 (stat) +/- 0.04 (syst) ps, the B^0 lifetime tau(B^0) = 1.40 +0.11/-0.10 (stat) +/- 0.03 (syst) ps, and the ratio tau(Lambda^0_b)/tau(B^0) = 0.87 +0.17/-0.14 (stat) +/- 0.03 (syst). In contrast with previous measurements using semileptonic decays, this is the first determination of the Lambda^0_b lifetime based on a fully reconstructed decay channel.Comment: 7 pages, 4 figures, Submitted to Physical Review Letters, v2: Added FNAL Pub-numbe

    Measurement of B(t->Wb)/B(t->Wq) at sqrt(s) = 1.96 TeV

    Full text link
    We present the measurement of R = B(t->Wb)/B(t->Wq) in ppbar collisions at sqrt(s) = 1.96 TeV, using 230 pb-1 of data collected by the DO experiment at the Fermilab Tevatron Collider. We fit simultaneously R and the number of selected top quark pairs (ttbar), to the number of identified b-quark jets in events with one electron or one muon, three or more jets, and high transverse energy imbalance. To improve sensitivity, kinematical properties of events with no identified b-quark jets are included in the fit. We measure R = 1.03 +0.19 -0.17 (stat+syst), in good agreement with the standard model. We set lower limits of R > 0.61 and |V_tb| > 0.78 at 95% confidence level.Comment: 7 pages, 1 figure submitted to Phys. Rev. Let
    corecore