60 research outputs found
Compact anisotropic spheres with prescribed energy density
New exact interior solutions to the Einstein field equations for anisotropic
spheres are found. We utilise a procedure that necessitates a choice for the
energy density and the radial pressure. This class contains the constant
density model of Maharaj and Maartens (Gen. Rel. Grav., Vol 21, 899-905, 1989)
and the variable density model of Gokhroo and Mehra (Gen. Rel. Grav., Vol 26,
75-84, 1994) as special cases. These anisotropic spheres match smoothly to the
Schwarzschild exterior and gravitational potentials are well behaved in the
interior. A graphical analysis of the matter variables is performed which
points to a physically reasonable matter distribution.Comment: 22 pages, 3 figures, to appear in Gen. Rel. Gra
A rotating three component perfect fluid source and its junction with empty space-time
The Kerr solution for empty space-time is presented in an ellipsoidally
symmetric coordinate system and it is used to produce generalised ellipsoidal
metrics appropriate for the generation of rotating interior solutions of
Einstein's equations. It is shown that these solutions are the familiar static
perfect fluid cases commonly derived in curvature coordinates but now endowed
with rotation. The resulting solutions are also discussed in the context of
T-solutions of Einstein's equations and the vacuum T-solution outside a
rotating source is presented. The interior source for these solutions is shown
not to be a perfect fluid but rather an anisotropic three component perfect
fluid for which the energy momentum tensor is derived. The Schwarzschild
interior solution is given as an example of the approach.Comment: 14 page
Tretinoin-based formulations - influence of concentration and vehicles on skin penetration
Tretinoin is used in the management of acne and it is part of a gold standard treatment for photoaging. It has also been reported as an agent for superficial chemical peeling in highly concentrated formulations with few considerations about skin penetration. The aim of this study was to evaluate the influence of drug concentration and vehicles currently used on skin penetration of tretinoin. In vitro permeation tests were carried out using Franz diffusion cells fitted with porcine ear skin and 10% aqueous methanol in the receptor compartment. Formulations studied, cream or hydroalcoholic dispersion, containing 0.25%, 1% and 5% of tretinoin were placed in the donor compartment for six hours. Tretinoin concentration in skin layers was measured by high performance liquid chromatography. The largest amount of tretinoin from both vehicles was detected in stratum corneum with significant differences among the three concentrations. The hydroalcoholic dispersion was the best vehicle. Significant amounts of tretinoin were found even in deep layers of epidermis. The formulation with 0.25% tretinoin showed better results when considered the amount of tretinoin on skin in terms of percentage. Finally, skin penetration of tretinoin was influenced by vehicle and concentration of this drug used in formulation
Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources
We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples
Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed
Genetic studies on telomere length are important for understanding age-related diseases. Prior GWASs for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally diverse individuals (European, African, Asian, and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole-genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n = 109,122 individuals. We identified 59 sentinel variants (p < 5 × 10−9) in 36 loci associated with telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated that the independent signals colocalized with cell-type-specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated that our TL polygenic trait scores (PTSs) were associated with an increased risk of cancer-related phenotypes
Reusable optical bioassay platform with permeability-controlled hydrogel pads for selective saccharide detection
10.1016/j.aca.2007.11.046Analytica Chimica Acta6072204-210ACAC
Protein particles formed by protein activation and spontaneous self-assembly
In this article, a non-chemical crosslinking method is used to produce pure protein microparticles with an innovative approach, so-called protein activation spontaneous and self-assembly (PASS). The fabrication of protein microparticles is based on the idea of using the internal disulfide bridges within protein molecules as molecular linkers to assemble protein molecules into a microparticle form. The assembly process is triggered by an activating reagent-dithiothreitol (DTT), which only involved in the intermediate step without being incorporated into the resulting protein microparticles. Conventional protein microparticle fabrication methods usually involve emulsification process and chemical crosslink reactions using amine reactive reagents such as glutaraldehdye or EDC/NHS. The resulting protein microparticles are usually having various size distributions. Most importantly crosslinking reactions using amine reactive reagents will result in producing protein microparticles with undesired properties such as auto-fluorescence and high toxicity. In contrast to the conventional methods, our technology provides a simple and robust method to produce highly homogeneous, stable and non-fluorescence pure protein microparticles under mild conditions at physiological pH and temperature. The protein microparticles are found to be biodegradable, non-toxic to MDCK cells and with preserved biological activities. Results on the cytotoxcity study and enzyme function demonstrate the potential applications of the protein microparticles in the area of pharmaceutics and analytical chemistry. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
- …