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Abstract. The Kerr solution for empty space-time is presented in an
ellipsoidally symmetric coordinate system and it is used to produce gen-
eralised ellipsoidal metrics appropriate for the generation of rotating in-
terior solutions of Einstein’s equations. It is shown that these solutions
are the familiar static perfect fluid cases commonly derived in curva-
ture coordinates but now endowed with rotation. These are also shown
to be potential fluid sources for not only Kerr but also Kerr-de Sitter
empty space-time. The approach is further discussed in the context of
T-solutions of Einstein’s equations and the vacuum T-solution outside
a rotating source is presented. The interior source for these solutions
is shown not to be a perfect fluid but rather an anisotropic three com-
ponent perfect fluid for which the energy momentum tensor is derived.
The Schwarzschild interior solution is given as an example of the ap-
proach.

Keywords: Fluid sources, rotation, Kerr-de-Sitter, T-solutions, junction
conditions

1. Introduction

The problem of finding a suitable rotating fluid source which joins smoothly
to the asymptotically flat, vacuum gravitational field first published by Kerr
[1] remains of considerable interest in general relativity. Candidate closed
form solutions are extremely rare and only for the important case of thin
super-massive rotating discs, supported by internal pressure have analytic
sources been derived as is the case of Pichon and Lynden-Bell [2]. The in-
terior solution of Wahquist [3] solution has been the subject of considerable
interest as a possible, although physically unrealistic solution. However re-
cently Bradley et al [4] demonstrated that a fit to the Kerr solution was not
possible even though Sarnobat and Hoenselaers [5] showed using a series
approximation method, that a fit was possible up to second order terms in
an angular velocity parameter. The series approach to the matching prob-
lem is more common in the literature. For example Hartle [6] uses a second
order perturbation technique to describe the slow rotation of equilibrium
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configurations of cold stars with constant angular velocity whilst Wiltshire
[7] generalises this approach using Darmois [8] boundary conditions (see also
Bonnor and Vickers [9]).

In an alternative approach it has been suggested that imperfect fluid so-
lutions of Einstein’s equations may produce suitable sources for Kerr empty
space-time. Both Hernandez [10] and Lettelier [11] have produced possible
alternative energy momentum tensors although the latter is more realistic,
offering as it does, a clear interpretation of anisotropy in fluid sources based
upon an invariant combination of two component perfect fluids. These ten-
sors have not been used significantly in the context of rotation. However
non-rotating anisotropic solutions of Einstein’s equations based upon the en-
ergy momentum tensor of Lettelier have been derived by many authors. For
example, Mak and Harko [12] and Sharma and Maharaj [13] have recently
derived solutions with a view to determining physically realistic fluid sources
matching the exterior Schwarzschild solution. Since the pioneering work on
anisotropy by Bowers and and Liang [14] there has been considerable study
of relativistic anisotropy and reviews have been presented by Delgaty and
Lake [15] and Herrera and Santos [16]. The notion of anisotropy in rotating
sources will be shown to be of considerable significance in the discussion
below.

Although mathematical descriptions of rotation frequently centre upon
axially symmetric stationary metrics, for example Stephani [17] and Islam
[18] it has been shown by Krasiński [19] that the axially symmetric ellip-
soidal form may hold advantages in terms the description of relativistic fluid
interiors, a fact reinforced through its close resemblance to the geometry as-
sociated with rotating Newtonian fluids. More recently both Rácz [20] and
Zsigrai [21] have generalised the ideas of Krasinski and provided a rigorous
mathematical basis for their study although they were not exploited in terms
of generating rotating fluid interiors.

It is the aim here to build upon this work and demonstrate how the el-
lipsoidal form may be used to describe rotating fluid interiors in such a
way that they form a natural match to both Kerr analso Kerr-de Sitter
vacuum space-times. This is achieved by observing the close links between
ellipsoidal metrics and the normal curvature forms used to determine static
non-rotating solutions of Einstein’s equations. The non-rotating static so-
lutions are sometimes referred to as R-solutions Novikov, [25] Novikov and
Zeldovich [26] and McVittie and Wiltshire [27] and these have ’mirrror’ so-
lutions, valid within the Schwarzschild radius, known as T-solutions which
will also be shown to have a rotating ellipsoidal counterpart. In this way
the T-vacuum counterpart to the Kerr and the Kerr-de Sitter solution will
be presented in Section 3. An appropriate rotating fluid source suitable for
matching ellipsoidally symmetric geometry is discussed in Sections 4 and
5. In particular it will be shown that suitable model sources may be con-
structed using an extension of the Lettelier anisotropic approach to a tensor
constructed from three component fluid sources. Details of the matching
process are presented and applied to the Schwarzschild Interior solution en-
dowed with rotation.
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2. Ellipsoidal and curvature coordinate systems

In the following a metric with axially ellipsoidal symmetry will be dis-
cussed in the form

ds2 = ν(dt+ fdφ)2

−1

ν
(λdρ2 + (ρ2 + a2 cos2 θ)dθ2 + (ρ2 + a2) sin2 θdφ2), (1)

where f = f(ρ, θ), λ = λ(ρ, θ), ν = ν(ρ, θ). It will be used to describe the
gravitational field of a rotating anisotropic fluid source. Axially symmetric
ellipsoidal geometry has been described by for example Krasiński [19] and
Zsigrai [21] and an important property in the following is that the Kerr
vacuum solution of Einstein’s equations is given by:

f = fKerr =
2 sin2 θam(

√

m2 + ρ2 +m)

a2 cos2 θ + ρ2
, (2)

λ = λKerr =
ρ2(a2 cos2 θ + ρ2)

(a2 + ρ2)(m2 + ρ2)
, (3)

ν = νKerr =
a2 cos2 θ + ρ2

2m(
√

m2 + ρ2 +m) + a2 cos2 θ + ρ2
, (4)

where he constant a is the angular velocity parameter. Equations (2) to
(4) may be cast into the more familiar Boyer-Lindquist [22] form by setting
ρ2 = r2 − 2mr as has been shown by Rácz [20].

To determine possible interior solutions of Einstein’s equations consider
the generalised form of equations (2) to (4) but with the similar structure:

f =
aZ sin2 θ

a2 cos2 θ + ρ2
, (5)

λ =
Y (a2 cos2 θ + ρ2)

ρ2 + a2
, (6)

ν =
a2 cos2 θ + ρ2

X + a2 cos2 θ
, (7)

where X = X(ρ), Y = Y (ρ) and Z = Z(ρ) are arbitrary functions of ρ.
In general the Einstein tensor Ga

b for this metric has non-zero components
G1

1, G
1
2, G

2
1, G

2
2, G

3
3, G

3
4, G

4
3, G

4
4. However explicit calculation shows that

G1
2 = 0 = G2

1, (8)

is satisfied whenever:

a2 cos2 θ
(

ZZρ −XXρ + ρ2Xρ + 2ρX − 2ρ2
)

+ρ2ZZρ − 2ρZ2 − ρ2XXρ + ρ4Xρ + 2ρX2 − 2ρ3X = 0, (9)

where a suffix indicates a derivative. This has a particular solution

Z = X − ρ2, (10)

which will be used in equation (5).
When the angular velocity parameter a = 0, the metric (1) may be trans-

formed to the normal curvature coordinate system:

ds2 = e2αdt2 − e2βdr2 − r2dθ2 − r2 sin2 θ2dφ2, (11)
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where, α = α(r) and β = β(r), by means of the coordinate transformation:

ρ = reα, X = r2, Y =
e2β

(1 + rαr)2
. (12)

Using this transformation the metric (1) can be written in the following
ellipsoidal-curvature form

ds2 = ν̄(dt+ f̄dφ)2

− 1

ν̄
(λ̄dr2 + (r2e2α + a2 cos2 θ)dθ2 + (r2e2α + a2) sin2 θdφ2),

(13)

where f̄ = f̄(r, θ), λ̄ = λ̄(r, θ), ν̄ = ν̄(r, θ) and:

f̄ =
ar2(1 − e2α) sin2 θ

r2e2α + a2 cos2 θ
, (14)

λ̄ =
(r2e2α + a2 cos2 θ)e2(α+β)

r2e2α + a2
, (15)

ν̄ =
r2e2α + a2 cos2 θ

r2 + a2 cos2 θ
. (16)

The Kerr solution described in Boyer-Lindquist coordinates can be obtained
by substituting

e2α = e−2β = 1− 2m

r
, (17)

of the Schwarzschild solution into (13).
Notice that in the case when the cosmological constant Λ 6= 0, the Kerr

vacuum space-time generalises to the Kerr-de Sitter solution first found by
Carter[23]. For such cases the metric (13), with equations (14) to (16), may
be generalised in a way which retains the property that G1

2 = 0 = G2
1 and

reduces to (11) when the angular velocity parameter a = 0. The result can
be written compactly in the form:

ds2 =
∆r(dt− a sin2 θdφ)2

κ2h2
− ∆θ sin

2 θ(adt− (r2 + a2)dφ)2

κ2h2

−h2
(

e2(α+β)dr2

∆r
+
dθ2

∆θ

)

, (18)

where,

∆r = a2
(

1− Λr2

3

)

+ r2e2α, ∆θ = 1 +
Λa2 cos2 θ

3
,

h2 = r2 + a2 cos2 θ, κ = 1 +
Λa2

3
. (19)

The metric in the form (18) is a generalisation of Kerr-de Sitter vacuum
solution presented by Akcay and Matzner[24]. This particular form can be
found by setting:

e2α = e−2β = 1− 2m

r
− Λr2

3
, (20)

in (18) and (19).
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Consider now potential fluid sources with energy momentum tensor T a
b

for the metric (13) Einstein’s equations in the form:

Ga
b = 8πT a

b . (21)

In principle any solution of Einstein’s equations corresponding to the
non-rotating curvature system (11) can be substituted into the ellipsoidal-
curvature form (13), (14) to (16) and it will satisfy the condition G1

2 = 0 =
G2

1. However whilst metrics of the form (11) are also often used (for example
Stephani et al [17]) in the description of perfect fluid sources

T a
b = (̺+ p)UaUb − δab p, UaUa = 1, (22)

these are not also compatible with a source described by a rotating ellipsoidal-
curvature solution given by (13). For example isotropy of pressure p is not
possible in these cases.

Similar comments are also valid for a generalised source consisting of a
two component perfect fluid presented by Lettelier [11] and described by

T a
b = (̺+ p)UaUb + (σ − p)χaχb − δab p, (23)

where,

UaUa = 1, χaχa = −1, Uaχa = 0. (24)

Thus recent examples, Mak and Harko [12], Sharma and Maharaj [13] of
anisotropic two component fluid sources (23) described by the metric (11)
can also be substituted into (13) to correspond to a rotating source with
G1

2 = 0 = G2
1. However the source would no longer be described by equation

(23).
An appropriate anisotropic fluid source for the metric (13) will be dis-

cussed in Section 4.

3. Ellipsoidal forms of the T-solution

However before this discussion note that the metric (11) also has a T-
solution counterpart as has been described by Novikov [25], McVittie and
Wiltshire [27] of the form:

ds2 = e2V dt2 − e2W dr2 − t2dθ2 − t2 sin2 θ2dφ2, (25)

where V = V (t) and W = W (t) and the metrics (11) and (25) are related
by means of the transformation:

r = t̄, t = r̄, e2α(r) = −e2W (t̄), e2β(r) = −e2V (t̄), (26)

so that for empty space-time 1−2m/r = −(2m/t̄−1). The bars are omitted
in the notation to give (25).

It is interesting to use the approach developed in the previous section to
develop metrics applicable to rotating interior T-solutions and further to
determine a T-solution form of Kerr empty space-time. Hence using the
approach of the previous section together with the transformation (26) the
ellipsoidal-curvature metric (13) may be adapted to a form appropriate for
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use in a T-region as follows:

ds2 =
λT

νT
dt2 − νT (dr + fTdφ)2

− 1

νT
((t2e2W − a2 cos2 θ)dθ2 + (t2e2W − a2) sin2 θdφ2),

(27)

where now fT = fT (t, θ), λT = λT (t, θ), νT = νT (t, θ) and:

fT =
at2(1 + e2W ) sin2 θ

t2e2W − a2 cos2 θ
, (28)

λT =
(t2e2W − a2 cos2 θ)e2(V+W )

t2e2W − a2
, (29)

νT =
t2e2W − a2 cos2 θ

t2 + a2 cos2 θ
. (30)

Note that in equations (27) to (30) each of the components of the Einstein
tensor compute to zero except for G1

1, G
2
2, G

3
3, G

4
4, G

1
3 and G3

1 which are non
zero in general.

For example the non-rotating T-solution due to McVittie and Wiltshire
[27]:

e−2V =
4

3

(

2m

t
− 1

)

−1

, e2W =
1

t
, p =

̺

3
=

1

t2
, (31)

may be substituted into the rotating system (27), and (28 to (30) with the
result that G1

2 = 0 = G2
1. Potential sources for solutions of this type will be

provided in the next section.
In the particular case of the vacuum T-solution in (25):

e2W = e−2V =
2m

t
− 1, (32)

direct substitution of (32) into equations (27) to (30) demonstrates that:

Ga
b = 0, (33)

for all values of t and θ thus the resulting vacuum solution of Einstein’s
equations is T-region analogue of the Kerr solution.

In the case when the cosmological constant Λ 6= 0, the metric (27), with
equations (28) to (30), may be generalised in a way which retains the prop-
erty that G1

2 = 0 = G2
1. and reduces to (25) when a = 0. The result

is:

ds2 =
∆T

t (dr − a sin2 θdφ)2

κ2(hT )2
− ∆T

θ sin2 θ(adr − (t2 + a2)dφ)2

κ2(hT )2

−(hT )2

(

e2(V +W )dt2

∆T
t

+
dθ2

∆T
θ

)

, (34)

where,

∆T
t = a2

(

1− Λt2

3

)

− t2e2W , ∆T
θ = 1 +

Λa2 cos2 θ

3
,

(hT )2 = t2 + a2 cos2 θ, κ = 1 +
Λa2

3
. (35)
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Finally, the corresponding Kerr-de Sitter vacuum T-solution can be found
by substituting:

e2W = e−2V =
Λt2

3
+

2m

t
− 1, (36)

in (18) and (19). The T-solutions will not be investigated further here.

4. A three component perfect fluid tensor

In this section suitable fluid sources will be provided for the rotating
systems described by (13), (18) and (27), (34) by generalising the energy
momentum tensor (23) from a two component to a three component fluid
tensor. This can be achieved by considering the following three perfect fluids
which will form the components of the new tensor:

T ab
A (u) = Auaub − gabpA, (37)

T ab
B (v) = Bvavb − gabpB, (38)

T ab
C (w) = Cwawb − gabpC , (39)

where

A = ρA + pA, B = ρB + pB , C = ρC + pC , (40)

and where ρA, ρB , ρC are the respective internal energy densities and pA, pB , pC
are the respective internal pressures. The fluid velocity four vector are ua, va

and wa and satisfy:

uaua = 1, vava = 1, wawa = 1. (41)

In an extension of the method introduced by Letelier [11] the composite
three component tensor T ab(u, v, w) is now formed such that:

T ab(u, v, w) = T ab
A (u) + T ab

B (v) + T ab
C (w), (42)

and which may also be expressed in the form

T ab = ̺UaU b + Sab, SabUb = 0, (43)

where ̺ expresses the energy density of the composite tensor and Sab the
stress tensor component

To achieve the form (43) note that equation (42) with equations (37) to
(39) is a quadratic form and is invariant under the transformation:





ua

va

wa



 = R3(ψ̂)R2(θ̂)R1(φ̂)





ūa

v̄a

w̄a



 , (44)

where R1, R2, R3 are the Euler rotation matrices:

R1(φ̂) =









1 0 0

0 cos φ̂ −
√

C
B sin φ̂

0
√

B
C sin φ̂ cos φ̂









, (45)

R2(θ̂) =









√

A
C cos θ̂ 0 sin θ̂

0 1 0

−
√

A
C sin θ̂ 0 cos θ̂









, (46)
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R3(ψ̂) =









√

C
A cos ψ̂ −

√

B
A sin ψ̂ 0

√

C
B sin ψ̂ cos ψ̂ 0

0 0 1









. (47)

Thus from equation (42) with equations (37) to (39) and the transformation
(44) it follows that:

T ab(u, v, w) = T ab(ū, v̄, w̄)

= Aūaūb +Bv̄av̄b +Cw̄aw̄b − gabp, (48)

where,

p = pA + pB + pC . (49)

Note that equation (48) together with (41) implies that:

ūaūa = −C
A
w̄aw̄a +

C

A
− B

A
v̄av̄a +

B

A
+ 1. (50)

Thus when v̄a and w̄a are transformed to be spacelike so that v̄av̄a < 0 and
w̄aw̄a < 0 then it follows from (50) that ūa is timelike so that ūaūa > 0.
Such a transformation is possible by requiring orthogonality of ūa, v̄a, w̄a so
that

ūav̄a = 0, v̄aw̄a = 0, w̄aūa = 0. (51)

These conditions result in three equations for the Euler angles φ̂, θ̂, ψ̂ which
are lengthy and so are not presented here.

To present the three component fluid tensor (42) in form of (43) define:

Ua =
ūa

(ūbūb)1/2
, χa =

ṽa

(−ṽbṽb)1/2
, ξa =

ŵa

(−ŵbŵb)1/2
, (52)

where Ua is a timelike vector and χa, ξa are spacelike vectors so that

UaUa = 1, χaχa = −1, ξaξa = −1, (53)

and which also satisfy the orthogonality conditions:

Uaχa = 0, Uaξa = 0, χaξa = 0. (54)

With the further definition

̺ = T abUaUb. σ = T abχaχb. ̟ = T abξaξb. (55)

it follows from (48) and (52) that

̺ = Aūkūk − p, σ = Bv̄kv̄k + p, ̟ = Cw̄kw̄k + p. (56)

Thus from (55) it can be seen that (48) may be written in the form

T a
b = (̺+ p)UaUb + (σ − p)χaχb + (̟ − p)ξaξb − δab p. (57)

This of course is a natural extension to three perfect fluid components of the
tensor first proposed by Lettelier [11] for the two component perfect fluid
tensor (23).
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5. A particular three component fluid source for empty

spacetime

Consider now the conditions which are applicable such that the metric
(13) for a rotating ellipsoidal system is compatible with the energy momen-
tum tensor in the form (57). First notice that the only non zero components
of the Einstein tensor are G1

1, G
2
2, G

3
3, G

4
4 and G3

4, G
4
3 which means that the

vectors Ua, χa, ξa defined in (54) and (55) must satisfy:

U1 = 0 = U2, U3U3 + U4U4 = 1, (58)

χa =

√

ν

λ
δa1 =

√

r2e2α + a2

r2 + a2 cos2 θ
e−(α+β)δa1 , (59)

ξa =

√

ν

r2e2α + a2 cos2 θ
δa2 =

√

1

r2 + a2 cos2 θ
δa2 . (60)

Thus from (57) it can immediately be shown that:

σ = −T 1
1 , ̟ = −T 2

2 , (61)

and that the pressure p satisfies the consistency relationship:

(T 3
3 + p)(T 4

4 + p) = T 3
4 T

4
3 , (62)

It follows therefore that:

p =
−T 3

3 − T 4
4 + (T 4

4 − T 3
3 )
√

(1 + ǫ2R

2
, (63)

where

ǫ2R =
4T 3

4 T
4
3

(T 4
4 − T 3

3 )
2
, (64)

and so evaluating T a
a in (57) with (53) it follows that:

̺ = p+ T 3
3 + T 4

4 =
T 3
3 + T 4

4 + (T 4
4 − T 3

3 )
√

(1 + ǫ2R

2
. (65)

In the particular case of slow rotation (63) and (65) become:

p = −T 3
3 +

T 3
4 T

4
3

T 4
4 − T 3

3

+ · · · ,

̺ = T 4
4 +

T 3
4 T

4
3

T 4
4 − T 3

3

+ · · · . (66)

Since both T 3
4 and T 4

3 are proportional to the angular velocity parameter a
the approximation (66) is valid upto and including terms in a2.

Using the definition

Ω =
T 3
4

p+ ̺
⇒ U3 = ΩU4, (67)

it follows from the orthogonality condition (58) that

U4 =
1

√

g33Ω2 + 2g34Ω+ g44
. (68)

Hence from the metric (13) or (27) and Einstein’s equations (21), the phys-
ical characteristics Ua, χa, ξa, σ,̟, p, ̺ of a three component perfect fluid
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may be computed from equations (59), (60), (61), (63), (65), (67) and (68).
In principle the results are expressible in closed form even if practice it would
rarely be attempted.

It is now convenient to apply Darmois junction conditions [8] which re-
quire the continuity of the first and second fundamental forms across a
boundary surface r = rb.

In the case of the curvature coordinate system (11), without rotation,
a = 0, continuity of the first fundamental form implies:

{

e2α
}

r=rb
=
{

e−2β
}

r=rb
= 1− 2m

rb
, (69)

whilst continuity of the second fundamental form requires continuity of αr

across the r = rb which also implies a zero value for the pressure. In partic-
ular:

{

de2α

dr

}

r=rb

=
2m

r2b
⇒ {σ(rb) = 0}a=0 . (70)

In the case of a rotating source defined by the metric (13) and its junction
with Kerr empty space time continuity of the first fundamental form is again
satisfied by equation (69) but continuity of the second fundamental form now
gives rise to

σ(rb, θ) = 0, (71)

and so is a more general form of (70). This equation hold for all values of the
velocity parameter a as can be seen by the direct calculation of the pressure
term 8πσ = G1

1 which takes the following form:

8πσ(r, θ) = −e
−2βr4(2rαr − e2β + 1)

(r2 + a2 cos2 θ)3

−e
−2βa2cos2θ(−2αrr

3 − 2r2 + r2e−2α + r2e2(α+β))

(r2 + a2 cos2 θ)3
.

(72)

However note in general that:

̟(rb, θ) 6= 0, p(rb, θ) 6= 0, ̺(rb, θ) 6= 0, u3(rb, θ) 6= 0. (73)

6. Schwarzschild Interior solution as a source for Kerr empty

space-time

The above procedure may conveniently be used to demonstrate how the
Schwarzschild interior solution expressed in curvature coordinates (11) can
be embedded into the metric (13) for a rotating system which matches the
Kerr metric smoothly in accordance with the Darmois junction conditions.
The Schwarzschild interior solution, with constant energy density is given
by:

e2α =
1

4

{

3

√

1− 2m

rb
−
√

1− 2mr2

r3b

}2

, (74)

e−2β = 1− 2mr2

r3b
, (75)
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where r = rb defines the boundary with the Schwarzschild vacuum solution
and the solution is written in a form which satisfies the Darmois junction
conditions. This solution can now be embedded into (13) coupled with (14)
to (16) to describe a rotating system.

It follows from the results of the previous section that the values of
Ua, χa, ξa, σ,̟, p, ̺ can be calculated at the boundary r = rb. The results
are presented in closed form and as a power series for which a2 << r2 and
it is found that:

σ(rb, θ) = 0, ̟(rb, θ) = 0. (76)

Moreover:

8πp(rb, θ) = −
3m
√

r2b + a2 − 2rbm
√

r2b − 2rbm+ a2 cos2 θ

(rb − 2m)(r2b + a2 cos2 θ)2

+
3m(r2b + a2 − 2rbm)

(rb − 2m)(r2b + a2 cosθ)2

= − 3ma2 sin2 θ

2r4b (rb − 2m)
+ · · · . (77)

This confirms that the boundary pressure becomes important only when
terms in a2 are significant. The boundary value of the internal density is:

8π̺(rb, θ) =
3m
√

r2b + a2 − 2rbm
√

r2b − 2rbm+ a2 cos2 θ

(rb − 2m)(r2b + a2 cos2 θ)2

+
3m(r2b + a2 − 2rbm)

(rb − 2m)(r2b + a2 cosθ)2

=
6m

r3b
+

3a2m((16m − 7rb) cos
2 θ + 3rb)

2r5b (rb − 2m)
+ · · · , (78)

and the constant density term for the non-rotating system is apparent when
a power series expansions is employed. Furthermore from (67):

{

U3

U4

}

r=rb

=
a
√

r2b − 2rbm+ a2 cos2 θ

2(r2b + a2 cos2 θ)(r2b + a2 − 2rbm)
, (79)

which means that:

U4(rb, θ) =

(

1− 2m

rb

)

−1/2

− a2(8m− rb sin
2 θ)

8r
3/2
b (rb − 2m)3/2

+ · · · ,

U3(rb, θ) =
a

2r
3/2
b

√
rb − 2m

+ · · · . (80)

The junction conditions are completed by calculating the anisotropy vectors
χa and ξa at r = rb as follows:

χa(rb, θ) =

√

r2b − 2rbm+ a2

r2b + a2 cos2 θ
δa1 . ξa(rb, θ) =

√

1

r2b + a2 cos2 θ
δa2 . (81)



12 R.J. WILTSHIRE

7. Rotation with equation of state

Although in the previous section closed form calculations were given at
the junction r = rb no attempt was made to write the closed expressions
for the physical parameters in terms of r. In general the expressions are
too cumbersome and series approximations or numerical calculations would
normally be necessary.

Even for the particular solution due to Tolman [28] satisfying the equation
of state p = ̺/3 where:

e2α = cr, e−2β =
4

7
, (82)

the corresponding rotating solution, not matching empty space-time, is most
easily expressed as a power series in angular velocity parameter a that pro-
vided a << r. It is straight forward to show that:

8πσ =
1

7r2
+ a2 cos2 θ

(

− 4

7cr5
+

9

7r4
− c

r3

)

+ · · · ,

8π̟ =
1

7r2
+ a2 cos2 θ

(

4

7cr5
− 11

7r4
+

c

r3

)

+ · · · ,

(83)

and interesting to note that the presence of rotation (together with large
values of r) tends generally to decrease pressure σ in the direction of χa

whilst at the same time increasing pressure ̟ in the direction of ξa. In
addition the pressure p is

8πp =
1

7r2
+a2

(

− 9

7cr5
+

3

r4
− 7c

4r3

)

+a2 cos2 θ

(

13

7cr5
− 32

7r4
+

11c

4r3

)

+ · · · ,
(84)

with a non-cosinusoidal term which reduces p in the direction orthogonal to
χa and ξa in the presence of rotation. The internal density ̺ is:

8π̺ =
3

7r2
+ a2

(

3

7cr5
+

1

r4
− 7c

4r3

)

+ a2 cos2 θ

(

5

7cr5
− 32

7r4
+

19c

4r3

)

+ · · · ,
(85)

which generally increases in the presence of rotation. The expressions for
the velocity four vector Ua become:

U4 =
1√
cr

+
a2√
cr

(

−7c

4r
+

13

4r2
− 3

2cr3

)

+
a2√
cr

cos2 θ

(

7c

4r
− 11

4r2
+

1

cr3

)

+· · · ,
(86)

with:

U3 =
a

2r2

(

3√
cr

− 7
√
cr

2

)

+ · · · . (87)

Finally the anisotropy vectors χa and ξa are given by:

χa =

(

4

7
√
cr

+
2a2

7r3
√
cr

− 2a2cos2θ

7r2
√
cr

)

δa1 · · · , ξa =

(

1

r
− a2cos2θ

2r3

)

δa2+· · · .
(88)

Clearly the anisotopy deceases with increasing values of r.
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8. Discussion

The research presented here has built upon the notions of axial ellipsoidal
symmetry and anisotropy of pressure to present a method of determining
rotating interior fluid solutions which match the Kerr (or Kerr-de Sitter) vac-
uum solution smoothly. These interiors may be thought of as standard base
static solutions of Einstein’s equations but now endowed with rotation. The
base solutions can be either isotropic or anisotropic but presented in a curva-
ture coordinate system. These base solutions, also known as R-Solutions can
be transformed into T-solutions, applicable within the Schwarzschild radius
and it has been shown how these can also be endowed with rotation. The
method was applied to empty space-time to give the T-region counterpart
of the Kerr and the Kerr-de Sitter solution.

For this method to be applicable it has been necessary to extend the ideas
of anisotropy to a three component perfect fluid as metrics with axial ellip-
soidal symmetry are not compatible with perfect fluid sources or the two
component perfect fluid originally derived by Lettelier. Thus if this tech-
nique is to have wide applicability it is necessary to establish the existence
of this type of anisotropy from a physical point of view and also the bounds
on the validity of the assumption of axial ellipsoidal symmetry. Clearly if
rotation is to be based upon a perfect fluid source then space-times with
ellipsoidal symmetry are not appropriate and alternative methods should be
employed.

In principle the rotating interiors presented here can be expressed in closed
form and an example of this has been given using the Schwarzschild interior
metric endowed with rotation at the fluid boundary with empty space-time.
None the less the closed forms have a highly complex structure and the use
of power series in the angular velocity parameter seem inevitable. Clearly it
is important to establish criteria by which to analyse these rotating solutions
with a view to establishing models that are physically realistic.

References

[1] R.P. Kerr, Phys. Rev. Lett. 11, 237 (1963).
[2] C. Pichon and D. Lynden-Bell, Mon. Not. Roy. Soc. 280, 1007 (1996).
[3] H.D. Wahlquist, Phys. Rev. 172, 1291 (1968).
[4] M. Bradley, G. Fodor, M. Marklund, Z. Perjés, Class. Quantum. Grav. 17, 351 (2000).
[5] P. Sarnobat and C.A. Hoenselaers, Class. Quantum. Grav. 23 5603 (2006).
[6] J.B. Hartle, Astro. Phys. J. 150, 1005 (1967).
[7] R.J. Wiltshire and P. Messenger, Gen. Rel. Grav. 36, 1213 (2004).
[8] G. Darmois, Mémorial des Sciences Mathématiques, Vol 25 (Paris, Gautier-Villars,
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