135 research outputs found

    Physical parameters and the projection factor of the classical Cepheid in the binary system OGLE-LMC-CEP-0227

    Full text link
    A novel method of analysis of double-lined eclipsing binaries containing a radially pulsating star is presented. The combined pulsating-eclipsing light curve is built up from a purely eclipsing light curve grid created using an existing modeling tool. For every pulsation phase the instantaneous radius and surface brightness are taken into account, being calculated from the disentangled radial velocity curve of the pulsating star and from its out-of-eclipse pulsational light curve and the light ratio of the components, respectively. The best model is found using the Markov Chain Monte Carlo method. The method is applied to the eclipsing binary Cepheid OGLE-LMC-CEP-0227 (P_puls = 3.80 d, P_orb = 309 d). We analyze a set of new spectroscopic and photometric observations for this binary, simultaneously fitting OGLE V-band, I-band and Spitzer 3.6 {\mu}m photometry. We derive a set of fundamental parameters of the system significantly improving the precision comparing to the previous results obtained by our group. The Cepheid mass and radius are M_1 = 4.165 +/- 0.032 M_solar and R_1 = 34.92 +/- 0.34 R_solar, respectively. For the first time a direct, geometrical and distance-independent determination of the Cepheid projection factor is presented. The value p = 1.21 +/- 0.03(stat.) +/- 0.04(syst.) is consistent with theoretical expectations for a short period Cepheid and interferometric measurements for {\delta} Cep. We also find a very high value of the optical limb darkening coefficients for the Cepheid component, in strong disagreement with theoretical predictions for static atmospheres at a given surface temperature and gravity.Comment: 16 pages, 17 figures, accepted for publication in MNRA

    On the distance of the globular cluster M4 (NGC 6121) using RR Lyrae stars: I. optical and near-infrared Period-Luminosity and Period-Wesenheit relations

    Get PDF
    We present new distance determinations to the nearby globular M4 (NGC~6121) based on accurate optical and Near Infrared (NIR) mean magnitudes for fundamental (FU) and first overtone (FO) RR Lyrae variables (RRLs), and new empirical optical and NIR Period-Luminosity (PL) and Period-Wesenheit (PW) relations. We have found that optical-NIR and NIR PL and PW relations are affected by smaller standard deviations than optical relations. The difference is the consequence of a steady decrease in the intrinsic spread of cluster RRL apparent magnitudes at fixed period as longer wavelengths are considered. The weighted mean visual apparent magnitude of 44 cluster RRLs is \left=13.329\pm0.001 (standard error of the mean) ±\pm0.177 (weighted standard deviation) mag. Distances were estimated using RR Lyr itself to fix the zero-point of the empirical PL and PW relations. Using the entire sample (FU++FO) we found weighted mean true distance moduli of 11.35±\pm0.03±\pm0.05 mag and 11.32±\pm0.02±\pm0.07 mag. Distances were also evaluated using predicted metallicity dependent PLZ and PWZ relations. We found weighted mean true distance moduli of 11.283±\pm0.010±\pm0.018 mag (NIR PLZ) and 11.272±\pm0.005±\pm0.019 mag (optical--NIR and NIR PWZ). The above weighted mean true distance moduli agree within 1σ\sigma. The same result is found from distances based on PWZ relations in which the color index is independent of the adopted magnitude (11.272±\pm0.004±\pm0.013 mag). These distances agree quite well with the geometric distance provided by \citep{kaluzny2013} based on three eclipsing binaries. The available evidence indicates that this approach can provide distances to globulars hosting RRLs with a precision better than 2--3\%.Comment: Accepted for publication on Ap

    New Baade-Wesselink distances and radii for four metal-rich Galactic Cepheids

    Full text link
    We provided accurate estimates of distances, radii and iron abundances for four metal-rich Cepheids, namely V340 Ara, UZ Sct, AV Sgr and VY Sgr. The main aim of this investigation is to constrain their pulsation properties and their location across the Galactic inner disk. We adopted new accurate NIR (J,H,K) light curves and new radial velocity measurements for the target Cepheids to determinate their distances and radii using the Baade-Wesselink technique. In particular, we adopted the most recent calibration of the IR surface brightness relation and of the projection factor. Moreover, we also provided accurate measurements of the iron abundance of the target Cepheids. Current distance estimates agree within one sigma with similar distances based either on empirical or on theoretical NIR Period-Luminosity relations. However, the uncertainties of the Baade-Wesselink distances are on average a factor of 3-4 smaller when compared with errors affecting other distance determinations. Mean Baade-Wesselink radii also agree at one sigma level with Cepheid radii based either on empirical or on theoretical Period-Radius relations. Iron abundances are, within one sigma, similar to the iron contents provided by Andrievsky and collaborators, thus confirming the super metal-rich nature of the target Cepheids. We also found that the luminosity amplitudes of classical Cepheids, at odds with RR Lyrae stars, do not show a clear correlation with the metal-content. This circumstantial evidence appears to be the consequence of the Hertzsprung progression together with the dependence of the topology of the instability strip on metallicity, evolutionary effects and binaries.Comment: 9 pages, 7 figures, A&A accepte

    Young and Intermediate-age Distance Indicators

    Full text link
    Distance measurements beyond geometrical and semi-geometrical methods, rely mainly on standard candles. As the name suggests, these objects have known luminosities by virtue of their intrinsic proprieties and play a major role in our understanding of modern cosmology. The main caveats associated with standard candles are their absolute calibration, contamination of the sample from other sources and systematic uncertainties. The absolute calibration mainly depends on their chemical composition and age. To understand the impact of these effects on the distance scale, it is essential to develop methods based on different sample of standard candles. Here we review the fundamental properties of young and intermediate-age distance indicators such as Cepheids, Mira variables and Red Clump stars and the recent developments in their application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in Space Science Reviews (Chapter 3 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    The Large Magellanic Cloud and the Distance Scale

    Full text link
    The Magellanic Clouds, especially the Large Magellanic Cloud, are places where multiple distance indicators can be compared with each other in a straight-forward manner at considerable precision. We here review the distances derived from Cepheids, Red Variables, RR Lyraes, Red Clump Stars and Eclipsing Binaries, and show that the results from these distance indicators generally agree to within their errors, and the distance modulus to the Large Magellanic Cloud appears to be defined to 3% with a mean value of 18.48 mag, corresponding to 49.7 Kpc. The utility of the Magellanic Clouds in constructing and testing the distance scale will remain as we move into the era of Gaia.Comment: 23 pages, accepted for publication in Astrophysics and Space Science. From a presentation at the conference The Fundamental Cosmic Distance Scale: State of the Art and the Gaia Perspective, Naples, May 201

    On the Distance of the Globular Cluster M4 (NGC 6121) Using RR Lyrae Stars. II. Mid-infrared Period-luminosity Relations

    Get PDF
    New mid-infrared (MIR) period-luminosity (PL) relations are presented for RR Lyræ variables in the globular cluster M4 (NGC 6121). Accurate photometry was obtained for 37 RR Lyræ variables using observations from the Infrared Array Camera on board the Spitzer Space Telescope. The dispersion of M4's PL relations is 0.056, and the uncertainty in the slope is 0.11 mag. Additionally, we established calibrated PL relations at 3.6 and 4.5 μm using published Hubble Space Telescope geometric parallaxes of five Galactic RR Lyræ stars. The resulting band-averaged distance modulus for M4 is μ =11.399+/- 0.007({stat}) ± 0.080({syst}) ± 0.015({cal})+/- 0.020({ext}). The systematic uncertainty will be greatly reduced when parallaxes of more stars become available from the GAIA mission. Optical and infrared period-color (PC) relations are also presented, and the lack of an MIR PC relation suggests that RR Lyræ stars are not affected by CO absorption in the 4.5 μm band

    Dynamic tracking error with shortfall control using stochastic programming

    Get PDF
    In this contribution we tackle the issue of portfolio management combining benchmarking and risk control. We propose a dynamic tracking error problem and we consider the problem of monitoring at discrete points the shortfalls of the portfolio below a set of given reference levels of wealth.We formulate and solve the resulting dynamic optimization problem using stochastic programming. The proposed model allows for a great flexibility in the combination of the tracking goal and the downside risk protection. We provide the results of out-of-sample simulation experiments, on real data, for different portfolio configurations and different market conditions

    Global overview of the management of acute cholecystitis during the COVID-19 pandemic (CHOLECOVID study)

    Get PDF
    Background: This study provides a global overview of the management of patients with acute cholecystitis during the initial phase of the COVID-19 pandemic. Methods: CHOLECOVID is an international, multicentre, observational comparative study of patients admitted to hospital with acute cholecystitis during the COVID-19 pandemic. Data on management were collected for a 2-month study interval coincident with the WHO declaration of the SARS-CoV-2 pandemic and compared with an equivalent pre-pandemic time interval. Mediation analysis examined the influence of SARS-COV-2 infection on 30-day mortality. Results: This study collected data on 9783 patients with acute cholecystitis admitted to 247 hospitals across the world. The pandemic was associated with reduced availability of surgical workforce and operating facilities globally, a significant shift to worse severity of disease, and increased use of conservative management. There was a reduction (both absolute and proportionate) in the number of patients undergoing cholecystectomy from 3095 patients (56.2 per cent) pre-pandemic to 1998 patients (46.2 per cent) during the pandemic but there was no difference in 30-day all-cause mortality after cholecystectomy comparing the pre-pandemic interval with the pandemic (13 patients (0.4 per cent) pre-pandemic to 13 patients (0.6 per cent) pandemic; P = 0.355). In mediation analysis, an admission with acute cholecystitis during the pandemic was associated with a non-significant increased risk of death (OR 1.29, 95 per cent c.i. 0.93 to 1.79, P = 0.121). Conclusion: CHOLECOVID provides a unique overview of the treatment of patients with cholecystitis across the globe during the first months of the SARS-CoV-2 pandemic. The study highlights the need for system resilience in retention of elective surgical activity. Cholecystectomy was associated with a low risk of mortality and deferral of treatment results in an increase in avoidable morbidity that represents the non-COVID cost of this pandemic
    corecore