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Abstract In this contribution we tackle the issue of portfolio management combin-
ing benchmarking and risk control. We propose a dynamic tracking error problem
and we consider the problem of monitoring at discrete points the shortfalls of the
portfolio below a set of given reference levels of wealth. We formulate and solve the
resulting dynamic optimization problem using stochastic programming. The pro-
posed model allows for a great flexibility in the combination of the tracking goal
and the downside risk protection. We provide the results of out-of-sample simula-
tion experiments, on real data, for different portfolio configurations and different
market conditions.
Keywords: dynamic portfolio optimization, tracking error, shortfall.
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1 Introduction

Measuring risk is a crucial issue in financial modeling and it is relevant both for
pricing purposes and for asset allocation problems. In particular, investors are con-
cerned with the measurement and the management of risk in such a way that they
can obtain a portfolio which is compliant with their risk attitude.

The majority of investors are more concerned with downside risk rather than
upside risk, and there is experimental evidence that they treat differently losses from
gains. This introduces the need for asymmetric risk measures and can account for
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the growing interest of investors in mean return-downside risk portfolio models. The
key idea of these approaches is to separate the downside deviations from the upside
potential and control only the first part of risk. For a classification of different risk
measure in portfolio selection see, for example, [7].

Risk measurement is strictly connected with the definition of a term of com-
parison with respect to which we can contrast and compare the risk/return profile
of our portfolio. Moreover, it is common practice to monitor the performance of a
portfolio, or a fund manager, with reference to an explicitly declared, or implicitly
assumed, benchmark. This allows for a more objective assessment of the risk pro-
file and the performance evaluation of the investment, linking it with current market
conditions.

The tracking error and tracking error volatility are widely used measures of how
closely the investments behave with respect to the reference portfolio. However, they
are symmetric measures of distance and dispersion and cannot account for investor
aversion for downside rather than upside deviations.

In this contribution we aim at jointly considering the presence of a benchmark
and the issue of controlling downside risk. We introduce a set of barriers which
accounts for loss/gain preferences of the investor, i.e. the shortfall can be computed
with respect to a given level of acceptable losses or with respect to a given desired
level of minimum return for the portfolio.

The risk is thus measured by two different components, the first reflects the risk
profile of the benchmark; nevertheless, we consider that investors are more con-
cerned with the downside risk and, in particular, with negative deviations from cer-
tain reference levels. The resulting portfolio accounts for these two aspect of risk.
An indirect measure of risk through the choice of a benchmark and a more direct
control on the values of the portfolio through the reference levels. The approach
is flexible and allows to easily accounting for different investor preferences. To ex-
press risk aversion in portfolio management problems other approaches are possible,
mainly based on the definition of a proper utility function and of risk aversion coef-
ficients. They are particularly interesting from a theoretical point of view and have
been explored in the literature.

However, in this contribution, we are interested in investigating the connection
between the tracking error goal and the control of downside risk both from the point
of view of an investor and of a fund manager. To this aim, the use of reference points
and the management of risk through shortfalls from the set of specified threshold
levels of wealth represent, in our opinion, an easily understandable way of measur-
ing and communicating risk.

The structure of the paper is as follows. In Section 2, we briefly present the
contributions in the literature which deal with benchmarking and shortfall control.
In Section 3, we present and discuss our model for multiperiod tracking error with
shortfall. In Section 4, we present an application of the proposed model and, in order
to account for different market conditions, we consider out-of-sample simulation
experiments for different periods. Section 5 concludes.
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2 Literature review

Different contributions in the literature tackled the issue of benchmarking and track-
ing error. In a static portfolio selection framework, see, for example, [3][11][24]. For
a discussion on the reliability of tracking error as a measure of risk see [26]. While
for the use of asymmetric tracking error see [16][20][24].

Among the contributions on dynamic tracking error problems, in continuous or
discrete time setting, we refer to [2][8][12][17].

The concern of investors for downside risk has led to the development of a huge
stream of financial literature on the use of asymmetric and tail risk measures in port-
folio selection problems. There are many contributions which propose the use of al-
ternative risk measures, among them, see for example, [1][7][9][10][15][18][19][25].

We are interested in considering a multiperiod tracking error problem and a dis-
crete time monitoring of the shortfalls below given threshold levels of wealth, we
consider both symmetric and asymmetric tracking error measures. To this aim we
formulate and solve a multistage stochastic programming problem which provides
us with enough flexibility in the formulation of the objective function and of the
constraints. To deal with uncertainty in optimization problems other approaches are
possible and, in particular, we mention Robust Optimization and its application also
to financial optimization problems (see, for example, [4][6][23]).

Dempster et al., in [13][14], tackled the problem of dynamic portfolio manage-
ment for a pension fund in presence of minimum guarantees. They propose to con-
sider, as objective function, for their multistage stochastic programming problem,
the minimization of expected average shortfall and of expected maximum shortfall.

Different contributions in the literature consider the introduction of a shortfall
constraint in portfolio management; in particular, for a discussion on the use of
shortfall as a risk measure in asset allocation and in static tracking error problem,
we refer to [5]. In our problem we consider a discrete monitoring of the portfolio
level through the measurement of the shortfalls with respect to a set of reference
levels of wealth. This goal is then combined with a tracking error objective and our
model can be specified in different ways to account for symmetric and asymmetric
distance measures both with respect to the risky benchmark and with respect to
the wealth barriers. Moreover, we can allow for a trade-off between the two terms
according to the investor’s preferences.

3 Model formulation

We consider a dynamic tracking error problem and we assume that the investor is
interested in tracking the performance of a risky benchmark over time, where the
benchmark itself is treated as a stochastic component.

We consider the arborescent formulation of the problem and a scenario tree from
t = 0 (current state) to T ; we denote with kt a generic node in the event tree at time t
and with πkt the associated probability. We denote with ykt the value of the managed
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portfolio in each node and with xkt the value of the stochastic benchmark. To control
the value of the portfolio we introduce a set of reference levels of wealth, z j t with
j = 1, . . . ,J, which act as thresholds with respect to which we monitor the behavior
of the portfolio. In particular, we are interested in monitoring the shortfalls of the
portfolio value below each threshold level. The threshold levels are not stochastic
but can be time dependent.

The investor can choose among a set of risky assets and a liquidity component.
We denote with qi kt , i = 1, . . . ,n, and lkt the holdings in each asset, while, we use
ai kt and vi kt to denote the amounts of risky asset purchased and sold in each node,
respectively. The liquidity component absorbs the turnover in the portfolio and ac-
counts also for proportional transaction costs (tc). Moreover, for each node kt , we
denote with rkt = (r1kt , . . . ,rnkt ,rl kt ) the vector of returns of the risky assets and for
the liquidity component for period [t −1; t].

We want our model to account both for symmetric and asymmetric distance mea-
sures from the risky benchmark and from the reference levels. To this aim we choose
to use a mean absolute deviation model (MAD). The mean absolute deviation mea-
sure presents many advantages: it leads to a linear optimization problem (see, for
example, [21][22][24]), and can be easily separated into positive and negative devi-
ations, allowing for the required flexibility.

In more detail, we define the distance measure of the managed portfolio from the
risky benchmark, in node kt , as follows

|ykt − xkt |= max[ykt − xkt ;0]+max[−ykt + xkt ;0] = θ+
kt
+θ−

kt
(1)

With respect to the threshold levels of wealth z j t , with j = 1, . . . ,J, we are inter-
ested in considering only negative deviations from the reference levels and thus we
propose to use the following asymmetric distance measure

[ykt − z j t ]
− = max[−ykt + z j t ;0] = γ−j kt

(2)

For a discussion on how the MAD model can be transformed into a linear optimiza-
tion problem see, for example, [22][24][27].

The resulting multiperiod stochastic programming problem is

min
T

∑
t=0

[
Kt

∑
kt=Kt−1+1

πkt

(
c+ θ+

kt
+ c− θ−

kt

)
+

Kt

∑
kt=Kt−1+1

πkt

J

∑
j=1

d−
j γ−j kt

]
(3)

θ+
kt
−θ−

kt
= ykt − xkt (4)

γ−j kt
≥−ykt + z j t j = 1, . . . ,J (5)

ykt = lkt +
n

∑
i=1

qi kt (6)

qi kt = (1+ ri kt )
[
qi f (kt ) + ai f (kt ) − vi f (kt )

]
(7)

lkt = (1+ rl kt )

[
l f (kt ) −

n

∑
i=1

(1+ tc)ai f (kt )+
n

∑
i=1

(1− tc)vi f (kt )

]
(8)
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ai kt ≥ 0 vi kt ≥ 0 (9)
qi kt ≥ 0 lkt ≥ 0 (10)
θ+

kt
≥ 0 θ−

kt
≥ 0 (11)

γ−kt
≥ 0 (12)

qi0 = q̄i l0 = l̄ (13)
i = 1, . . . ,n kt = Kt−1 +1, . . . ,Kt t = 1, . . . ,T

where c+,c− and d−
j are positive weights, which may account for a progressive pe-

nalization of the deviations or for goal preferences with respect to different threshold
levels.

Equation (6) represents the portfolio composition in each node, while equations
(7)- (8) describe the dynamics of the assets in the portfolio moving from an ancestor
node f (kt) to a descendent node kt . Finally, equation (10) provide the non-negativity
conditions on the portfolio composition, ruling out the possibility for short-selling
and borrowing, and (13) give the initial portfolio endowments. The objective func-
tion of our problem accounts for two different terms. The first is a tracking goal with
respect to the risky benchmark while the second term accounts for the shortfalls be-
low the reference levels. The investor is interested in minimizing the distance from
the risky benchmark while at the same time limiting the downside risk measured
through the shortfalls.

The risk profile of the resulting optimal portfolios takes into account both the
connection with the benchmark and the risk aversion for gain or losses lower than a
set of specified barriers which are settled by the investors according to their invest-
ment goals. The control through reference levels is flexible and presents different
advantages in the formulation of the problem. First, barriers are allowed to be time
dependent and the risk control can be tailored along the investment horizon. For
example, it can be made tighter towards the end of the planning period to account
for wealth conservation objectives. Second, the control is introduced in the objec-
tive function, rather than in the constraints, in this way we allow for a trade-off with
the benchmarking goal and we are able to account for different risk profiles in the
investment.

4 Computational experiments

In the following we provide an application of the proposed model to real data
through an out-of-sample exercise of portfolio management. We assume that our
investor is interested in tracking the MSCI Europe Index using a subset of MSCI
Style Indexes. To test our model we use a weekly dataset from June 6, 2007 to May
16, 2012. Summary statistics on the Indexes are provided in table 1.

We apply our model simulating the management of the portfolio over a 10-week
period using a rolling-horizon procedure. In our experiments we consider two pe-
riods to account for different market conditions. The first simulation period ranges
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from December 14, 2011 to February 22, 2012, during this period the benchmark
has a significant positive trend, as can be seen from figure 1. The second simulation
period is from February 8, 2012 to April 18, 2012 and the market experiences both
huge drops and raises, see figure 2.

For each simulation period, we test different configurations of the objective func-
tion in order to analyze the behavior of the optimized tracking portfolio with respect
to the benchmark and the threshold levels. In more detail we consider the following
settings (in table 2 we summarize the coefficients of the objective function for the
portfolio configurations considered in the experiments)

• Portfolio 1a - pure benchmark tracking
• Portfolio 1b - benchmark tracking plus a shortfall control
• Portfolio 2a - asymmetric benchmark tracking plus shortfall control
• Portfolio 2b - asymmetric benchmark tracking plus enhanced shortfall control
• Portfolio 2c - asymmetric benchmark tracking plus enhanced shortfall control
• Portfolio 3a - pure shortfall control - one threshold - (no benchmark tracking)
• Portfolio 3b - pure shortfall control - two thresholds - (no benchmark tracking)

The threshold levels used in the simulation periods (J = 2) are as follows. For
the first period we set z1,t = 1010 and z2,t = 1020 constant for all t = 0, . . . ,T ; while
we choose z1,t = 970 and z2,t = 990, for all t = 0, . . . ,T , for the second simulation
period.

In more detail, the management experiments are carried out as follows. At each
step of the simulation we generate a 2-stage scenario tree; we solve the optimization
problem (3)-(13) and take the first period optimal decision. The portfolio composi-
tion is then evaluated using the true realized returns in the market and the resulting
value represents the new endowment for the following period. Clearly, the results
of the management experiments depend on the reliability of the generated scenario
trees. Many different models can be used to estimate future expected returns and
generate the event trees. In this contribution we do not tackle the issue of comparing
different models; we propose to generate the scenarios using historical simulation,
which assumes only that past returns are good predictors for future behavior without
further hypothesis on the return distributions.

In a first analysis we compare a pure tracking error model (portfolio 1a), with
portfolio 1b in which we add the controls on the downside deviations from the
threshold levels.

A second set of experiments consider only asymmetric distance measures from
the risky benchmark and the thresholds levels of wealth. We analyze three different
configuration of the objective function where we progressively increase the penalty
on the lower barrier, we refer to portfolio 2a, 2b and 2c in table 2 for the choices of
the parameters.

Finally, we consider an experiment in which we drop the tracking goal with re-
spect to the benchmark and consider only the downside penalization of negative
deviations from the barriers (see, portfolio 3a and 3b, in table 2).

In figure 1 we present the results for the portfolio management experiments for
the first period.
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Mean Variance Skewness Kurtosis
MSCI EUROPE -0.0014 0.0009 -0.5579 1.4773
MSCI EUROPE LG -0.0004 0.0007 -0.6569 1.9806
MSCI EUROPE LV -0.0021 0.0012 -0.4599 1.2498
MSCI EUROPE MG -0.0010 0.0011 -0.5418 1.6296
MSCI EUROPE MV -0.0024 0.0013 -0.1217 0.8914
MSCI EUROPE SMG -0.0008 0.0011 -0.5507 1.7773
MSCI EUROPE SMV -0.0019 0.0013 -0.1505 0.8251
MSCI EUROPE SG -0.0005 0.0012 -0.5613 1.9879
MSCI EUROPE SV -0.0013 0.0013 -0.1420 0.7773

Table 1 Summary statistics MSCI Europe Index and MSCI Europe Style Indexes, weekly data
from June 6, 2007 to May 16, 2012.

c+ c− d−
1 d−

2
portfolio 1a 1 1 0 0
portfolio 1b 1 1 1 1
portfolio 2a 0 1 1 1
portfolio 2b 0 1 1 10
portfolio 2c 0 1 1 100
portfolio 3a 0 0 1 0
portfolio 3b 0 0 1 1

Table 2 Parameters settings for the different portfolio configurations considered in the computa-
tional experiments.

We consider, as tracking assets, the following MSCI Style Indexes: LG, LV, SG,
SV. From the top graph we can see that the four Style Indexes guarantee a good
tracking performance of the index (portfolio 1a), while, when we introduce a short-
fall control for the threshold levels (portfolio 1b) we sacrifice a potential upside
capture. In the middle graph we can observe the portfolio behavior when we con-
sider asymmetric tracking for the risky benchmark and we introduce a progressively
higher penalization for the shortfalls (portfolios 2a, 2b and 2c). Finally, the bottom
graph displays the behavior of the portfolios which account only for shortfall penal-
ization without any tracking component in the objective function.

The same set of experiments has been carried out for the second simulation pe-
riod. This case is more interesting from the point of view of a downside protection
since the index experiences a sharp drop even below the lower threshold.

The same considerations as in the previous set of experiments apply. In partic-
ular, the introduction of a shortfall control is effective but is done at the cost of a
reduction in the gains when the market rises. Moreover, if we compare portfolios 2a
and 1b, it is interesting to observe that when we allow for a higher tracking error we
can improve the downside protection. From the bottom graph, which displays the
behavior of non-tracking portfolios, we can observe that there is an improvement in
the downside protection but at a higher cost in terms of upside capture.

The four Style Indexes, we used as tracking assets, allowed us to obtain a good
tracking performance in the out-of-sample experiments as it can be seen if we com-
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Fig. 1 Comparison between optimized tracking portfolios and benchmark, rolling simulation over
10-week period - December 14, 2011 to February 22, 2012 - two threshold levels z1 = 1020 and
z2 = 1010.
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Fig. 2 Comparison between optimized tracking portfolios, rolling simulation over 10-week period
- February 8, 2012 to April 18, 2012- two threshold levels z1 = 990 and z2 = 970.
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1 2 3 4 5 6 7 8 9 10
portf 1a 0.010 0.022 -0.063 0.026 -0.043 -0.063 0.016 0.066 -0.027 0.155
portf 1b -0.040 0.024 0.055 0.325 -1.425 0.032 0.572 0.634 0.715 -0.363
portf 2a -0.084 0.016 0.161 0.668 -2.392 0.188 1.013 1.188 1.175 -0.730
portf 2b -0.113 0.014 0.170 0.747 -2.473 0.212 1.076 1.277 1.237 -0.852
portf 2c -0.113 0.014 0.170 0.748 -2.472 0.213 1.076 1.277 1.237 -0.854
portf 3a -0.394 -0.035 0.117 1.480 -3.476 0.544 1.594 1.799 1.555 -1.111
portf 3b -0.395 -0.035 0.118 1.479 -3.477 0.544 1.595 1.805 1.554 -1.114

Table 3 Percentage Tracking Error with respect to the benchmark, over 10-week period from
February 8, 2012 to April 18, 2012, using 4 Style Indexes (LG,LV,SG,SV).

1 2 3 4 5 6 7 8 9 10
portf 1a 0.037 0.021 0.033 0.032 0.019 0.006 0.049 0.098 0.033 0.083
portf 1b 0.235 0.064 0.154 0.245 0.713 0.129 0.438 0.522 0.396 0.621
portf 2a 0.323 0.100 0.178 0.415 0.800 0.207 0.535 0.636 0.380 0.529
portf 2b 0.302 0.098 0.167 0.361 0.717 0.189 0.504 0.529 0.309 0.358
portf 2c 0.302 0.098 0.167 0.361 0.717 0.189 0.503 0.529 0.309 0.357
portf 3a 0.044 0.022 0.033 0.048 0.081 0.025 0.072 0.085 0.047 0.080
portf 3b 0.044 0.022 0.034 0.050 0.079 0.025 0.071 0.085 0.048 0.078

Table 4 Percentage Tracking Error Volatility with respect to the benchmark, over 10-week period
from February 8, 2012 to April 18, 2012, using 4 Style Indexes (LG,LV,SG,SV).

pare portfolios 1a with the Index for both simulation periods. However, in order
to analyze the possible improvement in the tracking performances we carried out a
further experiment using all the eight Style Indexes.

We computed the Tracking Error (TE) and Tracking Error Volatility (TEV) for
both simulation periods for tracking portfolios using as tracking assets the eight
Style Indexes. The results, in the two periods, are comparable, and we decide to
present only the statistics for the second period, which is more interesting from the
point of view of the behavior of the benchmark.

In tables 3 and 4 we report the percentage Tracking Error and percentage Track-
ing Error Volatility for the analyzed portfolios using four Style Indexes (LG, LV,
SG, SV), while tables 5 and 6 presents the same statistics using all the eight Style
Indexes (LG, LV, MG, MV, SMG, SMV, SG, SV). Including all the Style Indexes
improves the performance but, in our opinion, the tracking results with four Indexes
are already satisfying.

The proposed model allows for a great flexibility in the formulation of the objec-
tive function and can thus accommodate for different combinations of the tracking
and protection goals. Different risk attitude of the investor can be considered in the
form of combining a tracking goal with respect to a risky benchmark and introduc-
ing a set of desired barriers to control the behavior of the portfolio.
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1 2 3 4 5 6 7 8 9 10
portf 1a 0.008 0.002 -0.002 0.014 0.004 -0.006 0.001 0.002 -0.001 -0.010
portf 1b -0.078 0.028 0.075 0.300 -1.359 0.087 0.589 0.644 0.737 -0.536
portf 2a -0.088 0.028 0.209 0.650 -2.439 0.260 1.019 1.268 1.185 -0.821
portf 2b -0.098 0.024 0.203 0.706 -2.576 0.280 1.103 1.348 1.259 -0.893
portf 2c -0.099 0.024 0.203 0.706 -2.576 0.280 1.103 1.348 1.261 -0.894
portf 3a -0.399 -0.038 0.126 1.477 -3.458 0.545 1.598 1.780 1.558 -1.172
portf 3b -0.405 -0.037 0.126 1.477 -3.462 0.546 1.603 1.774 1.559 -1.171

Table 5 Percentage Tracking Error with respect to the benchmark, over 10-week period from
February 8, 2012 to April 18, 2012, using 8 Style Indexes (LG,LV,MG,MV,SMG,SMG,SG,SV).

1 2 3 4 5 6 7 8 9 10
portf 1a 0.017 0.005 0.013 0.011 0.027 0.013 0.022 0.054 0.023 0.078
portf 1b 0.219 0.070 0.148 0.261 0.655 0.138 0.462 0.502 0.353 0.560
portf 2a 0.332 0.103 0.204 0.459 0.872 0.201 0.543 0.559 0.352 0.394
portf 2b 0.321 0.102 0.187 0.424 0.712 0.191 0.493 0.471 0.288 0.319
portf 2c 0.321 0.101 0.187 0.423 0.713 0.190 0.492 0.472 0.287 0.320
portf 3a 0.069 0.015 0.031 0.042 0.105 0.022 0.060 0.110 0.046 0.063
portf 3b 0.066 0.014 0.032 0.040 0.113 0.021 0.061 0.114 0.045 0.071

Table 6 Percentage Tracking Error Volatility with respect to the benchmark, over
10-week period from February 8, 2012 to April 18, 2012, using 8 Style Indexes
(LG,LV,MG,MV,SMG,SMG,SG,SV).

5 Concluding remarks

In this contribution we propose a multiperiod tracking error problem which can ac-
count for shortfall control using a sequence of references levels for wealth. The use
of thresholds to define the goals for the portfolio management problem is intuitive
for the investor and avoids the choice of a proper utility function and the definition
of risk attitude/tolerance parameters. The proposed model allows to consider asym-
metric tracking measures and in particular to penalize only downside deviations
from the reference wealth levels. The computational experiments discussed show
the trade-off between the possibility of upside capture and the control on downside
risk. The role of the number of thresholds and the choice of a progressive penaliza-
tion could be further investigated.

The authors thank dott. Fabio Lanza for the research assistance in the computa-
tional experiments.
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