62 research outputs found

    Faint dwarfs as a test of DM models: WDM vs. CDM

    Full text link
    We use high resolution Hydro++N-Body cosmological simulations to compare the assembly and evolution of a small field dwarf (stellar mass ~ 1067^{6-7} M\odot, total mass 1010^{10} M\odot in Λ\Lambda dominated CDM and 2keV WDM cosmologies. We find that star formation (SF) in the WDM model is reduced and delayed by 1-2 Gyr relative to the CDM model, independently of the details of SF and feedback. Independent of the DM model, but proportionally to the SF efficiency, gas outflows lower the central mass density through `dynamical heating', such that all realizations have circular velocities << 20kms at 500 ~pc, in agreement with local kinematic constraints. As a result of dynamical heating, older stars are less centrally concentrated than younger stars, similar to stellar population gradients observed in nearby dwarf galaxies. Introducing an important diagnostic of SF and feedback models, we translate our simulations into artificial color-magnitude diagrams and star formation histories in order to directly compare to available observations. The simulated galaxies formed most of their stars in many \sim10 Myr long bursts. The CDM galaxy has a global SFH, HI abundance and Fe/H and alpha-elements distribution well matched to current observations of dwarf galaxies. These results highlight the importance of directly including `baryon physics' in simulations when 1) comparing predictions of galaxy formation models with the kinematics and number density of local dwarf galaxies and 2) differentiating between CDM and non-standard models with different DM or power spectra.Comment: 13 pages including Appendix on Color Magnitude Diagrams. Accepted by MNRAS. Added one plot and details on ChaNGa implementation. Reduced number of citations after editorial reques

    The Dual Origin of Stellar Halos II: Chemical Abundances as Tracers of Formation History

    Get PDF
    Fully cosmological, high resolution N-Body + SPH simulations are used to investigate the chemical abundance trends of stars in simulated stellar halos as a function of their origin. These simulations employ a physically motivated supernova feedback recipe, as well as metal enrichment, metal cooling and metal diffusion. As presented in an earlier paper, the simulated galaxies in this study are surrounded by stellar halos whose inner regions contain both stars accreted from satellite galaxies and stars formed in situ in the central regions of the main galaxies and later displaced by mergers into their inner halos. The abundance patterns ([Fe/H] and [O/Fe]) of halo stars located within 10 kpc of a solar-like observer are analyzed. We find that for galaxies which have not experienced a recent major merger, in situ stars at the high [Fe/H] end of the metallicity distribution function are more [alpha/Fe]-rich than accreted stars at similar [Fe/H]. This dichotomy in the [O/Fe] of halo stars at a given [Fe/H] results from the different potential wells within which in situ and accreted halo stars form. These results qualitatively match recent observations of local Milky Way halo stars. It may thus be possible for observers to uncover the relative contribution of different physical processes to the formation of stellar halos by observing such trends in the halo populations of the Milky Way, and other local L* galaxies.Comment: Version accepted for publication in ApJ Part 1. This version of the paper has been extended to include a detailed discussion of numerical issue

    Inflationary perturbations in anisotropic backgrounds and their imprint on the CMB

    Full text link
    We extend the standard theory of cosmological perturbations to homogeneous but anisotropic universes. We present an exhaustive computation for the case of a Bianchi I model, with a residual isotropy between two spatial dimensions, which is undergoing complete isotropization at the onset of inflation; we also show how the computation can be further extended to more general backgrounds. In presence of a single inflaton field, there are three physical perturbations (precisely as in the isotropic case), which are obtained (i) by removing gauge and nondynamical degrees of freedom, and (ii) by finding the combinations of the remaining modes in terms of which the quadratic action of the perturbations is canonical. The three perturbations, which later in the isotropic regime become a scalar mode and two tensor polarizations (gravitational wave), are coupled to each other already at the linearized level during the anisotropic phase. This generates nonvanishing correlations between different modes of the CMB anisotropies, which can be particularly relevant at large scales (and, potentially, be related to the large scale anomalies in the WMAP data). As an example, we compute the spectrum of the perturbations in this Bianchi I geometry, assuming that the inflaton is in a slow roll regime also in the anisotropic phase. For this simple set-up, fixing the initial conditions for the perturbations appears more difficult than in the standard case, and additional assumptions seem to be needed to provide predictions for the CMB anisotropies.Comment: 31 pages, 3 figure

    Linearization of homogeneous, nearly-isotropic cosmological models

    Full text link
    Homogeneous, nearly-isotropic Bianchi cosmological models are considered. Their time evolution is expressed as a complete set of non-interacting linear modes on top of a Friedmann-Robertson-Walker background model. This connects the extensive literature on Bianchi models with the more commonly-adopted perturbation approach to general relativistic cosmological evolution. Expressions for the relevant metric perturbations in familiar coordinate systems can be extracted straightforwardly. Amongst other possibilities, this allows for future analysis of anisotropic matter sources in a more general geometry than usually attempted. We discuss the geometric mechanisms by which maximal symmetry is broken in the context of these models, shedding light on the origin of different Bianchi types. When all relevant length-scales are super-horizon, the simplest Bianchi I models emerge (in which anisotropic quantities appear parallel transported). Finally we highlight the existence of arbitrarily long near-isotropic epochs in models of general Bianchi type (including those without an exact isotropic limit).Comment: 31 pages, 2 figures. Submitted to CQ

    Faint dwarfs as a test of DM models: WDM versus CDM

    Get PDF
    We use high-resolution Hydro+N-Body cosmological simulations to compare the assembly and evolution of a small field dwarf (stellar mass ∼106−7M⊙, total mass 1010M⊙) in Λ-dominated cold dark matter (CDM) and 2keV warm dark matter (WDM) cosmologies. We find that star formation (SF) in the WDM model is reduced and delayed by 1-2Gyr relative to the CDM model, independently of the details of SF and feedback. Independent of the dark matter (DM) model, but proportionally to the SF efficiency, gas outflows lower the central mass density through ‘dynamical heating', such that all realizations have circular velocities <20 km s−1 at 500pc, in agreement with local kinematic constraints. As a result of dynamical heating, older stars are less centrally concentrated than younger stars, similar to stellar population gradients observed in nearby dwarf galaxies. Introducing an important diagnostic of SF and feedback models, we translate our simulations into artificial colour-magnitude diagrams and star formation histories (SFHs) in order to directly compare to available observations. The simulated galaxies formed most of their stars in many ∼10Myr long bursts. The CDM galaxy has a global SFH, H i abundance and Fe/H and alpha-elements distribution well matched to current observations of dwarf galaxies. These results highlight the importance of directly including ‘baryon physics' in simulations when (1) comparing predictions of galaxy formation models with the kinematics and number density of local dwarf galaxies and (2) differentiating between CDM and non-standard models with different DM or power spectr

    Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at z>1

    Get PDF
    We identify an abundant population of extreme emission line galaxies (EELGs) at redshift z~1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broad-band magnitudes. Supported by spectroscopic confirmation of strong [OIII] emission lines -- with rest-frame equivalent widths ~1000\AA -- in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with 10^8 Msol in stellar mass, undergoing an enormous starburst phase with M_*/(dM_*/dt) of only ~15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the co-moving number density (3.7x10^-4 Mpc^-3) can produce in ~4 Gyr much of the stellar mass density that is presently contained in 10^8-10^9 Msol dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z>1.Comment: accepted for publication in ApJ; 10 pages; 6 figures; 1 tabl

    Improved Modeling of the Mass Distribution of Disk Galaxies by the Einasto Halo Model

    Full text link
    (Abridged) The analysis of the rotation curves (RCs) of spiral galaxies provides an efficient diagnostic for studying the properties of dark matter halos and their relations with the baryonic material. We have modeled the RCs of galaxies from The HI Nearby Galaxy Survey (THINGS) with the Einasto halo model, which has emerged as the best-fitting model of the halos arising in dissipationless cosmological N-body simulations. We find that the RCs are significantly better fit with the Einasto halo than with either a pseudo-isothermal sphere (Iso) or Navarro-Frenk-White (NFW) halo models. In our best-fit models, the radius of density slope -2 and the density at this radius are highly correlated. The Einasto index, which controls the overall shape of the density profile, is near unity on average for intermediate and low mass halos. This is not in agreement with the predictions from LCDM simulations. The indices of the most massive halos are in rough agreement with those of cosmological simulations and appear correlated with the halo virial mass. We find that a typical Einasto density profile declines more strongly in its outermost parts than any of the Iso or NFW models whereas it is relatively shallow in its innermost regions. The core nature of those regions of halos thus extends the cusp-core controversy found for the NFW model with low surface density galaxies to the Einasto halo with more massive galaxies like those of THINGS. We thus find that the Einasto halo model provides, so far, the best match to the observed RCs, and can therefore be considered as a new standard model for dark matter halos.Comment: 15 pages, 14 figures, The Astronomical Journal, in press, Volume 4, 2011 Octobe

    Understanding Dwarf Galaxies in order to Understand Dark Matter

    Full text link
    Much progress has been made in recent years by the galaxy simulation community in making realistic galaxies, mostly by more accurately capturing the effects of baryons on the structural evolution of dark matter halos at high resolutions. This progress has altered theoretical expectations for galaxy evolution within a Cold Dark Matter (CDM) model, reconciling many earlier discrepancies between theory and observations. Despite this reconciliation, CDM may not be an accurate model for our Universe. Much more work must be done to understand the predictions for galaxy formation within alternative dark matter models.Comment: Refereed contribution to the Proceedings of the Simons Symposium on Illuminating Dark Matter, to be published by Springe

    The Dual Origin of Stellar Halos

    Get PDF
    We investigate the formation of the stellar halos of four simulated disk galaxies using high resolution, cosmological SPH + N-Body simulations. These simulations include a self-consistent treatment of all the major physical processes involved in galaxy formation. The simulated galaxies presented here each have a total mass of ~10^12 M_sun, but span a range of merger histories. These simulations allow us to study the competing importance of in-situ star formation (stars formed in the primary galaxy) and accretion of stars from subhalos in the building of stellar halos in a LambdaCDM universe. All four simulated galaxies are surrounded by a stellar halo, whose inner regions (r < 20 kpc) contain both accreted stars, and an in-situ stellar population. The outer regions of the galaxies' halos were assembled through pure accretion and disruption of satellites. Most of the in-situ halo stars formed at high redshift out of smoothly accreted cold gas in the inner 1 kpc of the galaxies' potential wells, possibly as part of their primordial disks. These stars were displaced from their central locations into the halos through a succession of major mergers. We find that the two galaxies with recently quiescent merger histories have a higher fraction of in-situ stars (~20-50%) in their inner halos than the two galaxies with many recent mergers (~5-10% in-situ fraction). Observational studies concentrating on stellar populations in the inner halo of the Milky Way will be the most affected by the presence of in-situ stars with halo kinematics, as we find that their existence in the inner few tens of kpc is a generic feature of galaxy formation.Comment: Version accepted to ApJ. Content is unchanged from previous version, but paper has been restructured for clarit
    corecore