77 research outputs found

    Approximating the Solution of Surface Wave Propagation Using Deep Neural Networks

    Get PDF
    Partial differential equations formalise the understanding of the behaviour of the physical world that humans acquire through experience and observation. Through their numerical solution, such equations are used to model and predict the evolution of dynamical systems. However, such techniques require extensive computational resources and assume the physics are prescribed \textit{a priori}. Here, we propose a neural network capable of predicting the evolution of a specific physical phenomenon: propagation of surface waves enclosed in a tank, which, mathematically, can be described by the Saint-Venant equations. The existence of reflections and interference makes this problem non-trivial. Forecasting of future states (i.e. spatial patterns of rendered wave amplitude) is achieved from a relatively small set of initial observations. Using a network to make approximate but rapid predictions would enable the active, real-time control of physical systems, often required for engineering design. We used a deep neural network comprising of three main blocks: an encoder, a propagator with three parallel Long Short-Term Memory layers, and a decoder. Results on a novel, custom dataset of simulated sequences produced by a numerical solver show reasonable predictions for as long as 80 time steps into the future on a hold-out dataset. Furthermore, we show that the network is capable of generalising to two other initial conditions that are qualitatively different from those seen at training time

    Predicting the Propagation of Acoustic Waves using Deep Convolutional Neural Networks

    Get PDF
    A novel approach for numerically propagating acoustic waves in two-dimensional quiescent media has been developed through a fully convolutional multi-scale neural network. This data-driven method managed to produce accurate results for long simulation times with a database of Lattice Boltzmann temporal simulations of propagating Gaussian Pulses, even in the case of initial conditions unseen during training time, such as the plane wave configuration or the two initial Gaussian pulses of opposed amplitudes. Two different choices of optimization objectives are compared, resulting in an improved prediction accuracy when adding the spatial gradient difference error to the traditional mean squared error loss function. Further accuracy gains are observed when performing an a posteriori correction on the neural network prediction based on the conservation of acoustic energy, indicating the benefit of including physical information in data-driven methods

    Storm-induced upwelling of high pCO2 waters onto the continental shelf of the western Arctic Ocean and implications for carbonate mineral saturation states

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L07606, doi:10.1029/2012GL051574.The carbon system of the western Arctic Ocean is undergoing a rapid transition as sea ice extent and thickness decline. These processes are dynamically forcing the region, with unknown consequences for CO2 fluxes and carbonate mineral saturation states, particularly in the coastal regions where sensitive ecosystems are already under threat from multiple stressors. In October 2011, persistent wind-driven upwelling occurred in open water along the continental shelf of the Beaufort Sea in the western Arctic Ocean. During this time, cold (32.4) halocline water—supersaturated with respect to atmospheric CO2 (pCO2 > 550 μatm) and undersaturated in aragonite (Ωaragonite < 1.0) was transported onto the Beaufort shelf. A single 10-day event led to the outgassing of 0.18–0.54 Tg-C and caused aragonite undersaturations throughout the water column over the shelf. If we assume a conservative estimate of four such upwelling events each year, then the annual flux to the atmosphere would be 0.72–2.16 Tg-C, which is approximately the total annual sink of CO2 in the Beaufort Sea from primary production. Although a natural process, these upwelling events have likely been exacerbated in recent years by declining sea ice cover and changing atmospheric conditions in the region, and could have significant impacts on regional carbon budgets. As sea ice retreat continues and storms increase in frequency and intensity, further outgassing events and the expansion of waters that are undersaturated in carbonate minerals over the shelf are probable.Funding for this work was provided by the National Science Foundation (ARC1041102 – JTM, OPP0856244-RSP, and ARC1040694- LWJ), the National Oceanic and Atmospheric Administration (CIFAR11021- RHB) and the West Coast & Polar Regions Undersea Research Center (POFP00983 – CLM and JM).2012-10-1

    Variability of humidity conditions in the Arctic during the first International Polar Year, 1882-83

    Get PDF
    Of all the early instrumental data for the Arctic, the meteorological data gathered during the first International Polar Year, in 1882–83 (IPY-1), are the best in terms of coverage, quality and resolution. Research carried out during IPY-1 scientific expeditions brought a significant contribution to the development of hygrometry in polar regions at the end of the 19th century. The present paper gives a detailed analysis of a unique series of humidity measurements that were carried out during IPY-1 at hourly resolutions at nine meteorological stations, relatively evenly distributed in the High Arctic. It gives an overall view of the humidity conditions prevalent in the Arctic at that time. The results show that the spatial distribution of atmospheric water vapour pressure (e) and relative humidity (RH) in the Arctic during IPY-1 was similar to the present. In the annual course the highest values of e were noted in July and August, while the lowest occurred in the cold half of the year. In comparison to present-day conditions (1961–1990), the mean values of RH in the IPY-1 period (September 1882 to July 1883) were higher by 2.4–5.6%. Most of the changes observed between historical and modern RH values are not significant. The majority of historical daily RH values lie between a distance of less than two standard deviations from current long-term monthly means

    Climate simulations for 1880-2003 with GISS modelE

    Get PDF
    We carry out climate simulations for 1880-2003 with GISS modelE driven by ten measured or estimated climate forcings. An ensemble of climate model runs is carried out for each forcing acting individually and for all forcing mechanisms acting together. We compare side-by-side simulated climate change for each forcing, all forcings, observations, unforced variability among model ensemble members, and, if available, observed variability. Discrepancies between observations and simulations with all forcings are due to model deficiencies, inaccurate or incomplete forcings, and imperfect observations. Although there are notable discrepancies between model and observations, the fidelity is sufficient to encourage use of the model for simulations of future climate change. By using a fixed well-documented model and accurately defining the 1880-2003 forcings, we aim to provide a benchmark against which the effect of improvements in the model, climate forcings, and observations can be tested. Principal model deficiencies include unrealistically weak tropical El Nino-like variability and a poor distribution of sea ice, with too much sea ice in the Northern Hemisphere and too little in the Southern Hemisphere. The greatest uncertainties in the forcings are the temporal and spatial variations of anthropogenic aerosols and their indirect effects on clouds.Comment: 44 pages; 19 figures; Final text accepted by Climate Dynamic

    The ELANA technique: Constructing a high flow bypass using a non-occlusive anastomosis on the ICA and a conventional anastomosis on the SCA in the treatment of a fusiform giant basilar trunk aneurysm

    No full text
    A patient with a partially thrombosed fusiform giant basilar trunk aneurysm presented with devastating headache and symptoms of progressive brain stem compression. Having an aneurysm inaccessible for endovascular treatment, and after failing a vertebral artery balloon occlusion test, he was offered bypass surgery in order to exclude the aneurysm from the cerebral circulation and relieve his symptoms. A connection between the intracranial internal carotid artery and the superior cerebellar artery was created whereupon the basilar artery was ligated just distally to the aneurysm. The proximal anastomosis on the internal carotid artery was made using the excimer laser-assisted non-occlusive anastomosis (ELANA) technique, while a conventional end-to-side anastomosis was used for the distal anastomosis on the superior cerebellar artery. Intra-operative flowmetry showed a flow through the bypass of 40 ml/min after ligation of the basilar artery. An angiogram 24 hours later showed normal filling of the bypass and the vessels supplied by it, but also disclosed a subtotal occlusion of the proximal ipsilateral middle cerebral artery with delayed filling distally. The patient, who had a known thrombogenic coagulopathy, died the following day. Autopsy showed no signs of ischemia in the territories supplied by the bypass, but a thrombus in the proximal middle cerebral artery and massive acute hemorrhagic infarction with swelling in its territory and uncal herniation. Multiple fresh thrombi were found in the lungs. The ELANA anastomosis showed re-endothelialisation without thrombus formation on the inside

    Middle cerebral artery blood velocity and cerebral blood flow in sickle cell disease.

    No full text
    • …
    corecore