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[1] The carbon system of the western Arctic Ocean is
undergoing a rapid transition as sea ice extent and thickness
decline. These processes are dynamically forcing the region,
with unknown consequences for CO2 fluxes and carbonate
mineral saturation states, particularly in the coastal regions
where sensitive ecosystems are already under threat from
multiple stressors. In October 2011, persistent wind-driven
upwelling occurred in open water along the continental
shelf of the Beaufort Sea in the western Arctic Ocean.
During this time, cold (<�1.2�C), salty (>32.4) halocline
water—supersaturated with respect to atmospheric CO2

(pCO2 > 550 matm) and undersaturated in aragonite
(Waragonite < 1.0) was transported onto the Beaufort shelf. A
single 10-day event led to the outgassing of 0.18–0.54 Tg-C
and caused aragonite undersaturations throughout the water
column over the shelf. If we assume a conservative estimate
of four such upwelling events each year, then the annual
flux to the atmosphere would be 0.72–2.16 Tg-C, which is
approximately the total annual sink of CO2 in the Beaufort
Sea from primary production. Although a natural process,
these upwelling events have likely been exacerbated in
recent years by declining sea ice cover and changing atmo-
spheric conditions in the region, and could have significant
impacts on regional carbon budgets. As sea ice retreat con-
tinues and storms increase in frequency and intensity, fur-
ther outgassing events and the expansion of waters that
are undersaturated in carbonate minerals over the shelf are
probable. Citation: Mathis, J. T., et al. (2012), Storm-induced
upwelling of high pCO2 waters onto the continental shelf of the
western Arctic Ocean and implications for carbonate mineral satu-
ration states, Geophys. Res. Lett., 39, L07606, doi:10.1029/
2012GL051574.

1. Introduction

[2] The continental shelves of the western Arctic Ocean
play an important and likely increasing role in the global
carbon dioxide (CO2) cycle through complex and poorly
understood interactions with sea ice, ocean and atmospheric
circulation, and terrestrial processes [e.g., Bates et al., 2011].
Recent studies in this region have shown significant warm-
ing of the atmosphere [e.g., Serreze and Francis, 2006]
coupled with rapidly declining sea ice extent and thickness
[Wang and Overland, 2009] and increased storm activity
[Zhang et al., 2004; Sorteberg and Walsh, 2008]. Over the
next few decades as environmental conditions change rapidly
and anthropogenic CO2 continues to accumulate in the ocean
[i.e., Sabine et al., 2004], enhancing ocean acidification (OA)
in the western Arctic [i.e., Bates et al., 2011], the marine
carbon cycle in the region will likely enter a highly dynamic
state.
[3] The Beaufort Sea shelf (Figure S1 in the auxiliary

material) is relatively narrow with a limited physical sup-
ply of nutrients [Carmack and Wassmann, 2006;Macdonald
et al., 2010], although it does support a diverse array of both
benthic and pelagic organisms [Carmack and Macdonald,
2002].1 Rates of phytoplankton primary production over
the shelf have been estimated at �6–12 g C m�2 yr�1

[Macdonald et al., 2010; Anderson and Kaltin, 2001],
compared to ≥300 g C m2 yr�1 [i.e., Mathis et al., 2009;
Macdonald et al., 2010] in the highly productive Chukchi
Sea to the west. The high rate of primary production in
the Chukchi Sea makes it a strong sink for atmospheric
CO2, taking up as much as 90 mmol CO2 m�2 d�1 or
11–53 Tg C yr�1 [Bates et al., 2011]. In contrast, the Beau-
fort Sea is likely a neutral or very weak sink (2–3 Tg C yr�1)
for atmospheric CO2, and may at times be an atmospheric
source of CO2 due to high rates of coastal erosion and
remineralization of riverine discharge of organic matter
[Carmack and Macdonald, 2002].
[4] The physical circulation in this region is dominated by

a boundary current [Nikolopoulos et al., 2009] along the
Beaufort shelfbreak that, in the mean, flows to the east
(Figure S1). The current carries Pacific-origin waters that have
been modified by physical and biogeochemical processes
while transiting through the Chukchi Sea [Weingartner et al.,
1998; Mathis et al., 2007]. At times, the boundary current
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water has a strong shelf remineralization signature, with
high inorganic nutrient concentrations and elevated CO2

partial pressures (pCO2) [Mathis et al., 2007]. The current is
readily reversed (flows westward) in response to easterly or
northeasterly winds. Such winds can arise due a strength-
ening of the Beaufort Sea High [e.g., Watanabe, 2011], and/
or the passage of Aleutian Low storms located far to the
south [Pickart et al., 2009a]. The offshore Ekman transport
associated with the easterly winds induces upwelling of
higher-salinity halocline waters from the boundary current
and deep basin all along the shelfbreak [Pickart et al.,
2009b]. Reversals of the current are common during the
storm season in autumn and winter: Nikolopoulos et al.
[2009] found that the dominant velocity variability
observed along the shelfbreak during this part of the year
was due to such reversals. However, upwelling can occur
throughout the year [Schulze and Pickart, 2011, also

Seasonal variation of upwelling in the Alaskan Beaufort
Sea, submitted to Journal of Geophysical Research, 2012].
[5] Despite the prevalence of upwelling along the

Beaufort shelfbreak, very little is known about how these
events impact the carbon biogeochemistry of the water
column due to a lack of direct observations. Here we
describe the carbon chemistry of the shelf both before and
during a storm event that occurred in October 2011. These
new observations reveal some startling trends in carbonate
mineral saturation states (W) and fluxes of CO2 to the
atmosphere.

2. Methods

[6] Direct observations of temperature, salinity, pH, total
alkalinity (TA), dissolved inorganic carbon (DIC), and
inorganic nutrients were made throughout the water column
near the Beaufort Sea shelfbreak (Figure S1) in October of
2011 from the USCGC Healy. A seabird 911+ conductivity/
temperature/depth (CTD) instrument was used, mounted on
a 24-position 10-liter rosette. Partial gas pressure of CO2

(pCO2) was measured at the surface, with real-time mapping
following the methods described by McNeil et al. [2005].
Water column pCO2 and seawater calcium carbonate
(CaCO3) saturation states for aragonite (Warg) and calcite
(Wcal) were calculated from pH, TA, temperature, salinity,
phosphate, and silicate data, using CO2SYS (version 1.05)
and the thermodynamic model of Lewis and Wallace [1995].
Uncertainty in the calculation of W was <0.02. The error for
pCO2 was �5% of the total value. A more detailed
description of the methods used here is included in the
auxiliary material.
[7] Air–sea CO2 fluxes (FCO2; mmol m�2 d�1) were

determined from direct measurements of pCO2 from the
underway system using:

FCO2 ¼ FSST � FCO2 �DpCO2 ð1Þ

where kSST is the gas transfer velocity (cm hr�1), KCO2
is the

solubility of CO2 (mmol m�3 matm�1) estimated by Weiss
[1974], and ΔpCO2 is the air-sea pCO2 difference (matm).
Values of kSST were determined from the quadratic wind
speed dependency from Ho et al. [2011], such that:

kSST ¼ 0:277� U2
10

� �� Sc=600ð Þ�0:5 ð2Þ

where U10 is wind speed corrected to 10 m elevation above
the sea surface, and Sc is the Schmidt number for CO2 at the
in situ temperature. Wind speed was measured from sensors
mounted on the vessel. Hull-mounted acoustic Doppler
current profiler (ADCP) velocities were processed using the
CODAS software package [Firing, 1991] and subsequently
de-tided using the Oregon State University Global Inverse
Solution [Egbert et al., 1994]. To assess the atmospheric
conditions during the cruise, reanalysis fields from the
National Centers for Atmospheric Prediction (NCEP) and
the North American Regional Reanalysis (NARR) were
analyzed. The high resolution (32 km, 3 hr) of the NARR
[Mesinger et al., 2006] makes it especially useful in this
region.
[8] To determine the total CO2 flux we assumed that

upwelling formed quickly in response to wind-forcing. We
considered two areas to determine the total flux during this

Figure 1. Atmospheric conditions over the Beaufort Sea
during October 2011. (a) The monthly mean 10 m wind
speed (contours and color, m s�1). (b) The Hovmoller plot
of the sea-level pressure (contours- mb) and the zonal com-
ponent of the 10 m wind (color, m s�1) along 147�W, indi-
cated by the blue line in Figure 1a. The highs (H) and the
lows (L) that resulted in strong easterly flow along the
Beaufort Sea shelf, indicated by the blue lines, are labeled.
The three transects occupied during the cruise are denoted
by the blue dashed lines.
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event. First, we took the area covered by our observations
(5.5� longitude by 0.4� latitude or �3 � 1010 m2) to pro-
vide a conservative estimate. We then assumed that this
event likely impacted the entire length of the Beaufort
shelf, particularly since winds were even stronger to the
west of our observations. Accordingly, we considered an
area of 15� longitude and 0.4� latitude or �9 � 1010 m2 to
determine the potential regional flux.

3. Upwelling Effects on Beaufort Shelf Air-Sea
CO2 Flux and Carbonate Chemistry

[9] The average winds over the Chukchi and Beaufort
Seas during the month of October 2011 were more than one
standard deviation stronger than the long-term (1979-pres-
ent) climatology for that month (Figure 1a), and were pre-
dominantly easterly/ northeasterly (i.e., upwelling favorable).
This was due to a combination of a series of Aleutian low
pressure systems passing to the south, along with fluctuations
in the strength of the Beaufort Sea High (Figure 1b). Four
Aleutian lows traversed the Gulf of Alaska during the month,
but the largest wind event along the North Slope occurred
during Oct 14–21 when the Beaufort Sea High strengthened
in conjunction with the passage of an Aleutian low pressure
system. The zonal wind speed during this event exceeded
10 m s�1, which is more than enough to reverse the shelf-
break jet and drive upwelling in open water conditions
[Schulze and Pickart, 2011].

[10] Transect 1 (Figure S1) was occupied in the western
Beaufort Sea before the onset of the large wind event
(Figure 1b). During this time the upper water column was
stratified both on the shelf and over the shelfbreak. Water
density was 24–25 kg m�3 at the surface over the shelf and
decreased slightly (to <23.5 kg m�3) over the Canada Basin.
DIC and pCO2 in the upper 30 m over the shelf and shelf-
break ranged from 1950 to 2060 mmoles kg�1 and 330 to
350 matm. Calcite and aragonite were both supersaturated
(Wcal > 1.6 and Warg > 1.0) over the shelf and in the surface
waters of the Canada Basin, but aragonite was undersatu-
rated in the upper halocline waters (100–175 m) over the
Canada Basin.
[11] During the occupation of transect 1 the boundary

current was flowing to the east (>25 cm s�1), centered at a
depth of �100 m. The flow was bottom-intensified with a
definitive biogeochemical signature of remnant winter
Pacific water with DIC concentrations >2200 mmoles kg�1

and pCO2 > 600 matm. The temperature and salinity in the
core of the current were �1.5�C and 32.5, respectively, with
a density of 26.2 kg m�3. Aragonite was undersaturated
(Warg < 0.8) and calcite was close to undersaturation (Wcal <
1.2) within the boundary current. The fact that the current
was flowing eastward, along with the lack of an upwelling
signature in the hydrographic fields, indicates that this tran-
sect sampled the undisturbed circulation at the shelf and
shelfbreak.

Figure 2. Data from the underway system at CTD lines 2 and 3 and a transect along the shelfbreak. (a) Salinity; (b) temp.
(�C); (c) pCO2 (matm); (d) CO2 Flux (mmol C m�2 d�1), a positive value means that the CO2 flux is from the ocean to the
atmosphere.
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[12] Roughly 10 days later, two transects that included
underway pCO2 sampling (Lines 2 and 3; Figure S1) were
conducted to the east. Line 2 was near the Mackenzie River
Delta, and Line 3 was roughly 200 km west of the delta. As
seen in Figure 1b, these transects were occupied near the end
of the 10-day storm event, and locally the ship measured
winds exceeding 15 m s�1 from the east–northeast. In both
transects the boundary current was reversed with surface-
intensified flow exceeding 40 cm s�1, and isopycnals were
sloped upwards towards the shelf – the classic signature of
upwelling [Pickart et al., 2011]. The associated offshore
Ekman flow in the upper layer had fluxed low salinity
(<28.0), relatively warm (>1.0�C) shelf water into the
Canada Basin (Figure 2). This was in sharp contrast to the
conditions we observed along transect 1 before the onset of
strong winds from the east. Therefore, we consider our
occupation of transect 1 to be a “before” picture of the shelf
and shelf break when upwelling was not occurring.
[13] At the two eastern transects, the water on the shelf

was replaced by deeper water upwelled from the basin. Since
vigorous mixing takes place during this process, the water
brought from depth was not identical to that of the undis-
turbed boundary current, but nonetheless it was quite distinct
from the resident shelf water, which was warmer, had lower
salinity and pCO2, and higher Warg. Consequently, a sharp

shelf-to-basin gradient was established in numerous proper-
ties, including temperature, salinity, density, and pCO2. For
example, the fresher water that was transported offshore had
much lower pCO2 (�350 matm) relative to the water that
was upwelled from the boundary current (�550 matm)
(Figures 2 and 3a).
[14] The upwelling event also had a pronounced effect on

carbonate mineral saturation states both on and off the shelf.
The low-salinity shelf water that was transported offshore
was relatively replete in carbonate, such that Warg > 1.2
(Figure 3b) and Wcal > 2.0. However, the upwelled waters
were undersaturated with respect to aragonite (Warg < 1.0,
Figure 3b) and low with respect to calcite saturation
(Wcal < 2.0). In light of the large zonal extent of the
enhanced winds (Figure 1a), the upwelling of boundary
current water likely caused aragonite undersaturation in the
water column along the entire coast of the Beaufort Shelf
(and perhaps the northeast Chukchi shelf as well).
[15] The presence of water supersaturated with respect

to atmospheric pCO2 at the sea surface, along with the
enhanced wind speeds, created an outgassing event
(Figure 2). Fluxes of CO2 out of the water were on the order
of 28–53 mmol C m�2 d�1 for hundreds of kilometers along
the coast. This outgassing was slightly offset by the
uptake of CO2 by the waters transported offshore (�7 to

Figure 3. (a) Cross-sectional plot of pCO2 (matm) with density (kg m�3) contours along CTD line 2. The black arrows indi-
cates the direction of the CO2 flux. (b) Cross-sectional plot of aragonite saturation state (W), with contour lines along CTD
line 2. The dashed line illustrates where W = 1.
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�14 mmol C m�2 d�1). The NARR fields indicate that the
winds exceeded 8 m s�1 for nearly 10 days during the
strong event in the middle of the month (corroborated by
the shipboard wind measurements). This implies a net out-
gassing of 0.18–0.54 Tg-C, or approximately 25% of the
CO2 taken up by the entire Beaufort Sea in an average year
via primary productivity.
[16] Due to the prevalence of Aleutian lows and their

associated tracks during the autumn and winter months [e.g.,
Favorite et al., 1976], upwelling events are common in the
Beaufort Sea. Indeed, over the two year period from 2002–4,
45 such events were measured by a mooring array situated
across the shelf/slope near the location of transect 1 [Schulze
and Pickart, 2011]. Furthermore, upwelling occurred even
in the presence of 100% ice cover. However, when ice is
present much of the CO2 flux to the atmosphere would be
mitigated by the ice barrier to air–sea exchange. Therefore,
while upwelling events in the presence of ice would likely
bring waters undersaturated with respect to aragonite onto
the shelf, the CO2 outgassing would be limited. Accord-
ingly, pCO2 supersaturations and carbonate mineral under-
saturations would be preserved on the shelf for longer
periods of time. Currently, the ice in this region of the
Beaufort Sea is returning later each year and is thinning,
both of which could lead to long-term enhancement of CO2

outgassing in the region.
[17] Using an estimate of 4 open water upwelling events

per year [Schulze and Pickart, 2011], implies an annual
outgassing of 0.72–2.16 Tg-C, or roughly 2–24% of the
annual estimated sink for CO2 on the Chukchi Shelf [i.e.,
Bates et al., 2011]. It should be noted, however, that the time
period studied by Schulze and Pickart [2011] was charac-
terized by a weakened Beaufort Sea High [von Appen and
Pickart, 2012], which is less favorable for upwelling. Since
the late 2000s the Beaufort Sea High has strengthened, and
the modeling study of Watanabe [2011] suggests that under
such enhanced easterly winds the shelfbreak jet is signifi-
cantly weakened and offshore Ekman transport is the dom-
inant mode of shelf-basin exchange. This suggests that the
outgassing CO2 flux estimate given above may be conser-
vative, which is also supported by the notion that more high
latitude storms are predicted under a warming climate
[Zhang et al., 2004; Sorteberg and Walsh, 2008]. Conse-
quently, the Beaufort Sea may be a source of CO2 to the
atmosphere, and play a greater role in the regional carbon
budget, than previously thought.

4. Conclusions

[18] Data from a recently observed upwelling event in the
Beaufort Sea has provided valuable new insights into major
controls on water column carbon biogeochemistry. When
this shelf is forced by easterly winds due to the passage of
Aleutian lows to the south and/or a strengthened Beaufort
Sea High, boundary current water that is replete in CO2 and
undersaturated in aragonite is upwelled to the surface. The
net effect of this upwelling is an outgassing of CO2 to the
atmosphere and the dispersal of water that is potentially
corrosive to carbonate-shelled organisms over the shelf.
Since these upwelling events are natural occurrences, it is
likely that this part of the western Arctic shelf has always
been a larger source of CO2 to the atmosphere than has
previously been assumed. However, recent reduction in sea

ice extent and duration, coupled with increased storm
activity, has likely exacerbated the impacts of upwelling on
water column saturation states and CO2 flux across the air-
sea interface. Upwelling of this undersaturated water onto
the shelf is yet another potential stressor for both benthic and
pelagic calcifying organisms in the western Arctic Ocean.
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