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Abstract. Partial differential equations formalise the understanding
of the behaviour of the physical world that humans acquire through
experience and observation. Through their numerical solution, such equa-
tions are used to model and predict the evolution of dynamical systems.
However, such techniques require extensive computational resources and
assume the physics are prescribed a priori. Here, we propose a neural net-
work capable of predicting the evolution of a specific physical phenomenon:
propagation of surface waves enclosed in a tank, which, mathematically,
can be described by the Saint-Venant equations. The existence of re-
flections and interference makes this problem non-trivial. Forecasting of
future states (i.e. spatial patterns of rendered wave amplitude) is achieved
from a relatively small set of initial observations. Using a network to make
approximate but rapid predictions would enable the active, real-time
control of physical systems, often required for engineering design. We
used a deep neural network comprising of three main blocks: an encoder,
a propagator with three parallel Long Short-Term Memory layers, and
a decoder. Results on a novel, custom dataset of simulated sequences
produced by a numerical solver show reasonable predictions for as long as
80 time steps into the future on a hold-out dataset. Furthermore, we show
that the network is capable of generalising to two other initial conditions
that are qualitatively different from those seen at training time.

Keywords: Deep Learning for Physical Systems - Recurrent Neural
Networks - Representation Learning.

1 Introduction

Partial differential equations (PDEs) are used to model physical systems in many
different fields, including aeronautical, mechanical, electrical and electromagnetic
systems design. The algorithms traditionally used for their numerical solution can
achieve high accuracy, but can be computationally very expensive. Solvers may
also require extensive parameter tuning and the dynamics are governed by the
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PDEs and therefore prescribed a priori. There has been recent interest in using
deep networks and machine learning to learn the behaviour of physical systems
directly from data and to complement the role of traditional solvers [2], B, [OHIT].
For example, using approximate, but computationally low-cost, solutions could
reduce the time needed for design iteration or provide real-time active control in
complex systems. To achieve this, it is critical for the deep neural network to
have the ability to generalise to many different initial conditions, even those that
differ substantially from the data used during training, and to sustain long-term
predictions without resorting back to numerical simulation software.

The main contribution of the present paper is the investigation of the use of
deep learning to perform state-evolution prediction on the rendered amplitudes
of surface waves enclosed by solid wall boundary conditions, using a novel
modification of an existing architecture. This physical system is described by
the Saint-Venant equations and used in many important applications, such as
avalanche [7] and urban flood modelling [§]. It is non-trivial to solve, given the
complexity of the equations, and the presence of reflections and interference
phenomena. To the best of our knowledge, state evolution of surface wave
phenomena using deep networks has not been previously attempted. The network
acts solely on visual input, without knowing the parameters of the operating
environment. From snapshots of rendered wave-amplitude observed at 5 instants
in time (at the constant but arbitrary sampling rate of 100 Hz), we forecast
the wave patterns over the next 10 time steps (i.e. 100 ms) using an encoder-
propagator-decoder architecture [2]. Then, the last 5 predictions are repeatedly
used as new inputs to enable long term predictions. The test of prediction quality
is ambitious: after training on predictions of the next 20 frames, we propagate
for 80 time steps (i.e. 800 ms) into the future at test time. Finally, we test the
generalisation ability of the network on qualitatively new initial conditions.

2 Related Work

Previous uses of deep neural networks to predict the evolution of states of a
system can be found within a variety of fields. Examples include predictions
of multi-body dynamics [10], trajectories [2], a robot end-effector’s interaction
with its surroundings [3, ], and the evolution of chaotic systems [9]. In fluid
dynamics, two pivotal studies that showed how neural networks can help to speed-
up numerical simulations for divergence-free fluids governed by the incompressible
Navier-Stokes equations are those by Yang et al. [I5] and Tompson et al. [12]. In
particular, the latter focused on accelerating the pressure step of the numerical
solver [12]. More recently, Wiewel et al. used an LSTM-based architecture (Long
Short-Term Memory), alternated with numerical simulations for stability, to
predict the evolution of the 3-dimensional pressure field of a fluid [14]. Moreover,
Kim et al. presented a generative neural network that synthesises parametrisable,
but not fully arbitrary, velocity fields for fluids from a low-dimensional parameters
set [B]. It is worth noting that most of the neural networks applied to the Navier-
Stokes equations are trained to predict either the pressure or the velocity fields,



Approximating Surface Wave Propagation with Deep Learning 3

or both, rather than the motion of particles within the fluid. However, it is harder
to measure these fields experimentally as opposed to particle tracking. Thus,
other works have applied deep learning to model particle motion [11]. Finally,
Long et al. [6] use a hybrid algorithm combining a numerical solver based on
Cellular Neural Networks with a LSTM that forecasts the evolution of external
forces applied to the fluid. To the best of our knowledge, we are the first to
predict the evolution of a system described by the Saint-Venant equations.

A strategy that is shared across many neural networks for dynamical pre-
dictions consists of first allowing the network to build its own representation of
the spatio-temporal data and then propagating this latent space in time[2] [3] [].
This procedure is based on the assumption that each individual propagation
in time is governed by the same function. However, the propagator is either
a convolutional layer or a single LSTM. Furthermore, there are differences in
the way the system of interest is given as input to the network. For instance,
Sanchez-Gonzales et al. use multiple graph networks that contain information
about static or dynamic properties of the system [10], while Finn et al. employ a
guided procedure where the network is presented with sensory data on actuators’
live position and forces [3], and Ehrhardt et al. use a neural network which
solely relies on visual input [2]. We followed the latter strategy, with the aim of
extending the present work from simulations to experimental data.

NN

(e) T = 100.

3 The Saint-Venant equations

T =25 (c)T =50 T = T75.

Fig. 1: Example of surface wave propagation, generated using TriFlow [I]. T
represents the number of time steps since the initial perturbation.

We aim to solve the 2-dimensional Saint-Venant equations in non-conservative
form with no coriolis or viscous forces (a non-linear coupled system). They
successfully model wave propagation phenomena and are used in many fields,
including avalanche [7] and urban flood modelling [8]. They are given by:

he + ((H + h)u)s + ((H + h)v), =0

Ut + Uty + Vuy + ghy — V(Uzy + Uyy) =0

U + uvg + vvy + ghy — V(Vgg + Vyy) =0
Here, H is the reference water height and h is the deviation from this reference, u
and v are the velocities in the x and y direction, respectively, g is the gravitational
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acceleration, v is the kinematic viscosity (set to 107¢ m2s~! ), and u, is the
partial derivative of u with respect to x. We used solid wall boundary conditions
along the whole perimeter of the environment. The initial condition was given by
a droplet (a localised 2-dimensional Gaussian), and we varied its location, as well
as the propagation speed, within the dataset. The simulations were run using
TriFlow[I], with the generation of each simulated frame taking, on average, 0.44
seconds on a CPU. The final images (Figure [l are given by a rendering model
with azimuth of 45 degrees and altitude of 20 degrees. We ran 3,000 simulations,
each with 100 images at a resolution of 128 x 128 and a sampling frequency of 100
Hz (300,000 images in total). During training, random data augmentation was
implemented by random flips in both the horizontal and the vertical direction. For
each network trained, we randomly split the 3,000 simulations into training (70%),
validation (15%), and test (15%) sets. To assess the network’s generalisation
performance onto more challenging scenarios, we also simulated two new initial
conditions: two droplets with random locations and a linear wave front.

4 Long term predictor network architecture
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Fig. 2: Depiction of the internal structure and data flow of the prediction network
with three LSTMs. Only one of the three LSTMs is used at any time.

Our neural network consists of an autoencoder structure with a propagator in
its centre [2]. The data work-flow is as follows. Five states representing rendered
wave patterns at 5 consecutive instants in time are given as the initial input. This
is passed through the encoder, then repeatedly propagated in time by selecting one
of three fully connected LSTMs (1000 units each), instead of just a single LSTM
as applied in [2]. Finally, a decoder transforms the propagated latent vectors into
10 predicted future states. From these, the last 5 fields were reinserted again as
input for further propagation. To handle this protocol seamlessly, we used three
LSTMs in the propagator, with only one being active at a time, according to the
type of prediction. One LSTM dealt with the initialisation of the network, one
performed the self-propagation, and the last one was active during the reinsertion
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step. Preliminary results (in the Supplementary Material) appear to indicate that
this modification is better than a single LSTM. Specifically, using only a single
LSTM produced cyclical artefacts in time, with spikes appearing when predictions
where reinserted as inputs. Such an effect was reduced when using the three LSTM
structure. All three LSTMs shared the same hidden and cell states, ensuring
complete information preservation (visualised in Figure [2]). The encoder has 4
convolutional layers (60, 120, 240 and 480 units, using a stride of 2, 7x 7 and 3 x 3
kernels for the first and the following layers, respectively), and a fully connected
layer to a latent space of 1000 nodes. The tanh non-linearity was used throughout.
Regularisation was induced with dropout and batch normalisation layers. The
architecture of the decoder mirrors that of the encoder, using deconvolutional
layers. We used the Mean Square Error (MSE) between targets and predictions
as the loss function, and ADAM as the optimization scheme. At training and
test time, 20 and 80 frames were predicted, respectively, to test the network’s
extrapolation abilities. Using Pytorch and a NVIDIA GTX 1070, training each
network for 50 epochs took approximately 7 hours.

5 Results

We trained 10 predictive networks, of which 6 converged successfully. The failure
of the remaining 4 is likely due to the lack of sufficient data to train three large
LSTMs (longer training did not help). By combining LSTM propagation and
reinsertion of the resultant outputs, we predict 80 time steps into the future from
an initial input of 5 images. We report not only the outcome of the most successful
network, but also the average results across the entire ensemble of converged
networks, to show the variability intrinsic in training for such a complex task.

5.1 Performance Assessment

A quantitative test of the network’s predictive quality as a function of time steps
from the last initial input is shown in Figure [3] Specifically, we evaluated the
image quality of the predictions using the Root Mean Squared Error (RMSE,
Figure Bh) and the Structural Similarity index (SSIM, Figure [3p) between targets
and predictions. The former aims to quantify the pixelwise spatio-temporal
accuracy of the predictions, however it does not always correlate with perceptual
similarity, which is instead captured by the latter [I3]. Results are presented
by the average (solid lines) and the standard deviation (shaded area) across
all the networks that converged. Our best network achieved an average SSIM
(RMSE) of 0.96 (0.04), 0.89 (0.09), 0.80 (0.11), 0.66 (0.16) and 0.56 (0.19) at
time-steps 1, 20, 40, 60, and 80, respectively. One of the main challenges for the
network is to extrapolate predictions to 80 frames after only being trained on
20: as expected, the SSIM decreases and the RMSE increases for longer term
predictions. However, the lack of a sharp decrease in performance after 7' = 20 is
promising. To contextualise the absolute accuracy values, we also plot RMSE
and SSIM between the targets and the last frame of the input sequence (“last
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Fig.3: RMSE (a) and SSIM (b) between targets and predictions (solid lines). For
comparison, we show the same measures computed between the targets and the
last input frames (dashed line). Lines and shadowed areas are the mean value
and the standard deviation across the whole test dataset, respectively. Our best
network achieved an average SSIM (RMSE) of 0.96 (0.04), 0.89 (0.09), 0.80 (0.11),
0.66 (0.16) and 0.56 (0.19) at time-steps 1, 20, 40, 60, and 80, respectively.

input” baseline). The purpose of such a measure is to estimate how well the
network would perform without any physical knowledge, that is where its best
guess at predicting the future is the last input it received. From T = 60, the
SSIM suggests modest improvement with respect to this “last input” baseline,
while visual inspection (Figure [4]) suggests that some predictions are closer to
the target patterns than the last input frame.

An example sequence of initial inputs, as well as target and predicted rendered
wave patterns can be seen in Figure[d] Five frames, taken at regular intervals, are
shown to illustrate both short- and long-term prediction. Despite performance
degradation over time, the network seems to sustain the relevant features of the
propagating waves for long periods of time, almost until the end of the simulation
for some features. It is worth remarking that the whole sequence is predicted by
the neural network only, without any call to the numerical simulation software.
Furthermore, to make correct predictions, the network not only needs to infer
how to update the current state, but is also required to perform an implicit
visual estimate of relevant physical parameters, such as the viscosity and density,
directly from the input data. Figure [5| shows another prediction example (from a
different trained network), together with the intensity profile of the ground truth
and predicted images, along a row situated near the boundary surface. Such a line
was chosen to track the wave front during reflection, which is harder to model. It
can be seen that the network is able to replicate the spatial pattern of the rendered
wave amplitude (top row), albeit with lower accuracy around the reflection at the
border (bottom row). Finally, we report that predicting and saving the entirety
of the 80-frames time sequence took less than half a second. More example results
can be found in the Supplementary Material (http://bit.ly/2P2V{6g).
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Fig.4: Example initial inputs (top row), targets from numerical solver (middle
row) and spatio-temporal pattern predicted by the trained network number 4
(bottom row): t represents the time-steps elapsed after the last initial input frame.
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5.2 Generalisation Performance

On top of assessing the networks on left-out test data, we also tested them on
two qualitatively different types of initial conditions: specifically, i) two droplets
and ii) a linear propagating wave front. This allowed us to evaluate how well the
trained networks captured the physics of the wave propagation. Results are shown
in Figure [f] and Figure[7] The former shows the RMSE and the SSIM between
targets and predictions for the two new types of initial conditions, averaged
across all trained networks. For comparison, we included the same measures
computed between the last original input and the current target frame. Figure [7]
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Fig.5: Top: predicted two-dimensional spatial patterns from trained network
number 3 vs targets from numerical solver. Bottom: spatial intensity profiles for
predictions and targets along the horizontal line in the frames on top. This line
approximately follows the wave front as it goes through reflection.
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Fig. 6: RMSE (a) and SSIM (b) between targets and predictions (thick blue lines)
for the two new initial conditions (each represented by a different dashed pattern).
For comparison, we show the same measures computed between the targets and
the last initial input frame (thin orange lines). Lines and shadowed areas are the
mean values and the standard deviation, respectively, across all trained networks.
For the linear wave front, our best network achieved an average SSIM (RMSE)
of 0.83 (0.12), 0.79 (0.15), 0.69 (0.19), 0.65 (0.20) and 0.64 (0.18) at time-steps 1,
20, 40, 60, and 80, respectively. For the two droplets, the same values are 0.91
(0.07), 0.80 (0.11), 0.69 (0.14), 0.51 (0.19), 0.46 (0.20).

displays some example predictions. As shown by the error and accuracy curves
corresponding to the “last input” baseline, the new scenarios are harder for the
network to predict. The linear wave front is a particularly challenging test, since
it involves both a new scenario and a new wave shape. Despite this, the results
suggest that, although the predictions are not as accurate, the network can adapt
to completely unseen data which varies significantly in spatial distribution from
the training data. At the same time, the influence of the curved wave front — a
prior created by the training data — is also clearly visible, especially for predictions
further ahead in time. At the moment, we do not know exactly how strong this
influence is.

6 Discussion

The results presented in this work suggest that our trained network can perform
state prediction of environments governed by complex physical laws. We believe
this to be the first instance where such an analysis pertains to a system described
by the Saint-Venant equations. Thus, no alternative state-of-the-art exists, though
possible future extensions might involve comparison with optical flow methods.
From 5 frames of visual input, the network is able to predict up to 80 frames
into the future with reasonable accuracy, although with a lower quality than the
numerical solver, especially for later time steps. Nevertheless, given that only
the first 20 frames were back-propagated during training, the network exhibits a
good extrapolation performance. The prediction of 80 frames using the neural
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Fig. 7: Example targets from the numerical solver and spatio-temporal patterns
predicted by the trained network nb. 3. The first and last two rows show pre-
dictions for the initial condition with two droplets and the linear wave front,
respectively. The time-steps for each prediction corresponds to time-steps elapsed
after the last initial input frame.
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network takes less than half a second, promoting the idea of using these techniques
for real-time simulation and control. Given sufficiently general training, similar
networks could be employed as an approximate simulation tool to perform initial
parameter sweeps, or quickly iterate over designs. Results on the generalisation
to two different unseen initial conditions are also promising. However, there are
still some limitations. First, a minority of the networks we trained did not reach
convergence and there was some variability in performance between networks.
Secondly, some portions of the rendered wave amplitude pattern are lost over
time. Finally, when tested on new scenarios, the influence of the prior learned
during training is evident. For future work, we will seek to: a) increase prediction
accuracy (and thus the generalisation performance); b) investigate architectures
and benchmarks for generalisation (e.g. multiple sources, wave front shapes and
boundary conditions); ¢) stabilise the training by assessing different cost functions;
d) analyse the latent space representation learned by the network; e) extend the
approach to data from real-world wave propagation.
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