176 research outputs found

    CD40-targeted adenoviral GM-CSF gene transfer enhances and prolongs the maturation of human CML-derived dendritic cells upon cytokine deprivation

    Get PDF
    Vaccination with autologous leukaemia-derived dendritic cells (DC) presents an adjuvant treatment option for chronic myeloid leukaemia (CML). Here, we show that high-efficiency CD40-targeted adenoviral gene transfer of GM-CSF to CML-derived DC induces long-lived maturation in the absence of exogenous cytokines and may thus ensure protracted stimulation of CML-specific T cells upon vaccination

    A preliminary assessment on use of biochar as a soil additive for reducing the soil-to-plant update of cesium isotopes in radioactively contaminated environments

    Get PDF
    peer-reviewedA series of Kd tracer batch experiments were conducted to assess the absorptive-desorption properties of Biochar as a potential agent to selectively sequester labile soil Cs or otherwise help reduce the uptake of Cs isotopes into plants. A parallel experiment was conducted for strontium. Fine-grained fractionated Woodlands tree Biochar was found to have a relatively high affinity for Cs ions (Kd > 100) in comparison with untreated coral soil (Kd < 10) collected from the Marshall Islands. The Biochar material also contains an abundance of K (and Mg). These findings support a hypothesis that the addition of Biochar as a soil amendment may provide a simple yet effective method for reducing the soil-to-plant transfer of Cs isotopes in contaminated environments

    Legacy of Amazonian Dark Earth soils on forest structure and species composition

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.Aim: Amazonian forests predominantly grow on highly weathered and nutrient poor soils. Anthropogenically enriched Amazonian Dark Earths (ADE), traditionally known as Terra Preta de Índio, were formed by pre-Columbian populations. ADE soils are characterized by increased fertility and have continued to be exploited following European colonization. Here, we evaluated the legacy of land-use and soil enrichment on the composition and structure in ADE and non-ADE (NDE) forests. Location: Eastern and southern Amazonia. Time period: Pre-Columbia – 2014. Methods: We sampled nine pairs of ADE and adjacent NDE forest plots in eastern and southern Amazonia. In each plot, we collected soil samples at 0–10 and 10–20 cm depth and measured stem diameter, height, and identified all individual woody plants (palms, trees and lianas) with diameter ≥ 10 cm. We compared soil physicochemical properties, vegetation diversity, floristic composition, aboveground biomass, and percentage of useful species. Results: In the nine paired plots, soil fertility was significantly higher in ADE soil. We sampled 4,191 individual woody plants representing 404 species and 65 families. The floristic composition of ADE and NDE forests differed significantly at both local and regional levels. In southern Amazonia, ADE forests had, on average, higher aboveground biomass than other forests of the region, while in eastern Amazonia, biomass was similar to that of NDE forests. Species richness of both forest types did not differ and was within the range of existing regional studies. The differences in composition between large and small diameter tree recruits may indicate long-term recovery and residual effects from historical land-use. Additionally, the proportion of edible species tended to be higher in the ADE forests of eastern and southern Amazonia. Main conclusions: The marked differences in soil fertility, floristic composition and aboveground biomass between ADE and NDE forests are consistent with a small-scale long-term land-use legacy and a regional increase in tree diversity

    Identifying the most productive breeding sites for malaria mosquitoes in The Gambia

    Get PDF
    BACKGROUND: Ideally larval control activities should be targeted at sites that generate the most adult vectors, thereby reducing operational costs. Despite the plethora of potential mosquito breeding sites found in the floodplains of the Gambia River, about 150 km from its mouth, during the rainy season, only a small proportion are colonized by anophelines on any day. This study aimed to determine the characteristics of larval habitats most frequently and most densely populated by anopheline larvae and to estimate the numbers of adults produced in different habitats. METHODS: A case-control design was used to identify characteristics of sites with or without mosquitoes. Sites were surveyed for their physical water properties and invertebrate fauna. The characteristics of 83 sites with anopheline larvae (cases) and 75 sites without (controls) were collected between June and November 2005. Weekly adult productivity was estimated with emergence traps in water-bodies commonly containing larvae. RESULTS: The presence of anopheline larvae was associated with high invertebrate diversity (Odds Ratio, OR 11.69, 95% CI 5.61-24.34, p < 0.001), the presence of emergent vegetation (OR 2.83, 95% CI 1.35-5.95, p = 0.006), and algae (at borderline significance; OR 1.87, 95% CI 0.96-3.618, p = 0.065). The density of larvae was reduced in sites that were larger than 100 m in perimeter (OR 0.151; 95% CI 0.060-0.381, p < 0.001), where water was tidal (OR 0.232; 95% CI 0.101-0.533, p = 0.001), vegetation shaded over 25% of the habitat (OR 0.352; 95% CI 0.136-0.911, p = 0.031) and water conductivity was above 2,000 muS/cm (OR 0.458; 95% CI 0.220-0.990, p = 0.048). Pools produced the highest numbers of Anopheles gambiae adults compared with rice fields, floodwater areas close to the edge of the floodplain or close to the river, and stream fringes. Pools were characterized by high water temperature and turbidity, low conductivity, increased presence of algae, and absence of tidal water. CONCLUSION: There are few breeding sites that produce a high number of adult vectors in the middle reaches of the river in The Gambia, whereas those with low productivity are larger in area and can be found throughout the rainy season. Even though risk factors could be identified for the presence and density of larvae and productivity of habitats, the results indicate that anti-larval interventions in this area of The Gambia cannot be targeted in space or time during the rainy season

    Numerical and functional defects of blood dendritic cells in early- and late-stage breast cancer

    Get PDF
    The generation of antitumour immunity depends on the nature of dendritic cell (DC)–tumour interactions. These have been studied mostly by using in vitro-derived DC which may not reflect the natural biology of DC in vivo. In breast cancer, only one report has compared blood DC at different stages and no longitudinal evaluation has been performed. Here we conducted three cross-sectional and one one-year longitudinal assessments of blood DC in patients with early (stage I/II, n=137) and advanced (stage IV, n=36) disease compared to healthy controls (n=66). Patients with advanced disease exhibit markedly reduced blood DC counts at diagnosis. Patients with early disease show minimally reduced counts at diagnosis but a prolonged period (1 year) of marked DC suppression after tumour resection. While differing in frequency, DC from both patients with early and advanced disease exhibit reduced expression of CD86 and HLA-DR and decreased immunostimulatory capacities. Finally, by comparing a range of clinically available maturation stimuli, we demonstrate that conditioning with soluble CD40L induces the highest level of maturation and improved T-cell priming. We conclude that although circulating DC are compromised by loco-regional and systemic breast cancer, they respond vigorously to ex vivo conditioning, thus enhancing their immunostimulatory capacity and potential for immunotherapy

    Methane fluxes during the initiation of a large-scale water table manipulation experiment in the Alaskan Arctic tundra

    Get PDF
    Much of the 191.8 Pg C in the upper 1 m of Arctic soil of Arctic soil organic mater is, or is at risk of, being released to the atmosphere as CO2 and/or CH4. Global warming will further alter the rate of emission of these gases to the atmosphere. Here we quantify the effect of major environmental variables affected by global climate change on CH4 fluxes in the Alaskan Arctic. Soil temperature best predicts CH4 fluxes and explained 89% of the variability in CH4 emissions. Water table depth has a nonlinear impact on CH4 efflux. Increasing water table height above the surface retards CH4 efflux. Decreasing water table depth below the surface has a minor effect on CH4 release once an aerobic layer is formed at the surface. In contrast with several other studies, we found that CH4 emissions are not driven by net ecosystem exchange (NEE) and are not limited by labile carbon supply
    corecore