136 research outputs found

    Self-Control in Cyberspace: Applying Dual Systems Theory to a Review of Digital Self-Control Tools

    Get PDF
    Many people struggle to control their use of digital devices. However, our understanding of the design mechanisms that support user self-control remains limited. In this paper, we make two contributions to HCI research in this space: first, we analyse 367 apps and browser extensions from the Google Play, Chrome Web, and Apple App stores to identify common core design features and intervention strategies afforded by current tools for digital self-control. Second, we adapt and apply an integrative dual systems model of self-regulation as a framework for organising and evaluating the design features found. Our analysis aims to help the design of better tools in two ways: (i) by identifying how, through a well-established model of self-regulation, current tools overlap and differ in how they support self-control; and (ii) by using the model to reveal underexplored cognitive mechanisms that could aid the design of new tools.Comment: 11.5 pages (excl. references), 6 figures, 1 tabl

    Development of a high density 600K SNP genotyping array for chicken

    Get PDF
    Background: High density (HD) SNP genotyping arrays are an important tool for genetic analyses of animals and plants. Although the chicken is one of the most important farm animals, no HD array is yet available for high resolution genetic analysis of this species.Results: We report here the development of a 600 K Affymetrix® Axiom® HD genotyping array designed using SNPs segregating in a wide variety of chicken populations. In order to generate a large catalogue of segregating SNPs, we re-sequenced 243 chickens from 24 chicken lines derived from diverse sources (experimental, commercial broiler and layer lines) by pooling 10-15 samples within each line. About 139 million (M) putative SNPs were detected by mapping sequence reads to the new reference genome (Gallus_gallus_4.0) of which ~78 M appeared to be segregating in different lines. Using criteria such as high SNP-quality score, acceptable design scores predicting high conversion performance in the final array and uniformity of distribution across the genome, we selected ~1.8 M SNPs for validation through genotyping on an independent set of samples (n = 282). About 64% of the SNPs were polymorphic with high call rates (>98%), good cluster separation and stable Mendelian inheritance. Polymorphic SNPs were further analysed for their population characteristics and genomic effects. SNPs with extreme breach of Hardy-Weinberg equilibrium (P < 0.00001) were excluded from the panel. The final array, designed on the basis of these analyses, consists of 580,954 SNPs and includes 21,534 coding variants. SNPs were selected to achieve an essentially uniform distribution based on genetic map distance for both broiler and layer lines. Due to a lower extent of LD in broilers compared to layers, as reported in previous studies, the ratio of broiler and layer SNPs in the array was kept as 3:2. The final panel was shown to genotype a wide range of samples including broilers and layers with over 100 K to 450 K informative SNPs per line. A principal component analysis was used to demonstrate the ability of the array to detect the expected population structure which is an important pre-investigation step for many genome-wide analyses.Conclusions: This Affymetrix® Axiom® array is the first SNP genotyping array for chicken that has been made commercially available to the public as a product. This array is expected to find widespread usage both in research and commercial application such as in genomic selection, genome-wide association studies, selection signature analyses, fine mapping of QTLs and detection of copy number variants

    A high resolution genome-wide scan for significant selective sweeps: an application to pooled sequence data in laying chickens

    Get PDF
    In most studies aimed at localizing footprints of past selection, outliers at tails of the empirical distribution of a given test statistic are assumed to reflect locus-specific selective forces. Significance cutoffs are subjectively determined, rather than being related to a clear set of hypotheses. Here, we define an empirical p-value for the summary statistic by means of a permutation method that uses the observed SNP structure in the real data. To illustrate the methodology, we applied our approach to a panel of 2.9 million autosomal SNPs identified from re-sequencing a pool of 15 individuals from a brown egg layer line. We scanned the genome for local reductions in heterozygosity, suggestive of selective sweeps. We also employed a modified sliding window approach that accounts for gaps in the sequence and increases scanning resolution by moving the overlapping windows by steps of one SNP only, and suggest to call this a "creeping window" strategy. The approach confirmed selective sweeps in the region of previously described candidate genes, i.e. TSHR, PRL, PRLHR, INSR, LEPR, IGF1, and NRAMP1 when used as positive controls. The genome scan revealed 82 distinct regions with strong evidence of selection (genome-wide p-value<0.001), including genes known to be associated with eggshell structure and immune system such as CALB1 and GAL cluster, respectively. A substantial proportion of signals was found in poor gene content regions including the most extreme signal on chromosome 1. The observation of multiple signals in a highly selected layer line of chicken is consistent with the hypothesis that egg production is a complex trait controlled by many genes

    Selection Signatures in Worldwide Sheep Populations

    Get PDF
    The diversity of populations in domestic species offers great opportunities to study genome response to selection. The recently published Sheep HapMap dataset is a great example of characterization of the world wide genetic diversity in sheep. In this study, we re-analyzed the Sheep HapMap dataset to identify selection signatures in worldwide sheep populations. Compared to previous analyses, we made use of statistical methods that (i) take account of the hierarchical structure of sheep populations, (ii) make use of linkage disequilibrium information and (iii) focus specifically on either recent or older selection signatures. We show that this allows pinpointing several new selection signatures in the sheep genome and distinguishing those related to modern breeding objectives and to earlier post-domestication constraints. The newly identified regions, together with the ones previously identified, reveal the extensive genome response to selection on morphology, color and adaptation to new environments

    The noble gas and nitrogen relationship between Ryugu and carbonaceous chondrites

    Get PDF
    Carbonaceous chondrites are considered to have originated from C-type asteroids and represent some of the most primitive material in our solar system. Furthermore, since carbonaceous chondrites can contain significant quantities of volatile elements, they may have played a crucial role in supplying volatiles and organic material to Earth and other inner solar system bodies. However, a major challenge of unravelling the volatile composition of chondritic meteorites is distinguishing between which features were inherited from the parent body, and what may be a secondary feature attributable to terrestrial weathering. In December 2020, the Hayabusa2 mission of the Japan Aerospace Exploration Agency (JAXA) successfully returned surface material from the C-type asteroid (162173) Ryugu to Earth. This material has now been classified as closely resembling CI-type chondrites, which are the most chemically pristine meteorites. The analysis of material from the surface of Ryugu therefore provides a unique opportunity to analyse the volatile composition of material that originated from a CI-type asteroid without the complications arising from terrestrial contamination. Given their highly volatile nature, the noble gas and nitrogen inventories of chondrites are highly sensitive to different alteration processes on the asteroid parent body, and to terrestrial contamination. Here, we investigate the nitrogen and noble gas signature of two pelletized grains collected from the first and second touchdown sites (Okazaki et al., 2022a), to provide an insight into the formation and alteration history of Ryugu. The concentration of trapped noble gas in the Ryugu samples is greater than the average composition of previously measured CI chondrites and are primarily derived from phase Q, although a significant contribution of presolar nanodiamond Xe-HL is noted. The large noble gas concentrations coupled with a significant contribution of presolar nanodiamonds suggests that the Ryugu samples may represent some of the most primitive unprocessed material from the early solar system. In contrast to the noble gases, the abundance of nitrogen and δ15N composition of the two Ryugu pellets are lower than the average CI chondrite value. We attribute the lower nitrogen abundances and δ15N measured in this study to the preferential loss of a 15N-rich phase from our samples during aqueous alteration on the parent planetesimal. The analyses of other grains returned from Ryugu have shown large variations in nitrogen concentrations and δ15N indicating that alteration fluids heterogeneously interacted with material now present on the surface of Ryugu. Finally, the ratio of trapped noble gases to nitrogen is higher than CI chondrites, and is closer to refractory phase Q and nanodiamonds. This indicates that Ryugu experienced aqueous alteration that led to the significant and variable loss of nitrogen, likely from soluble organic matter, without modification of the noble gas budget, which is primarily hosted in insoluble organic matter and presolar diamonds and is therefore more resistant to aqueous alteration.ISSN:0016-7037ISSN:1872-953

    The Sariçiçek Howardite Fall in Turkey: Source Crater of HED Meteorites on Vesta and İmpact Risk of Vestoids

    Get PDF
    The Sariçiçek howardite meteorite shower consisting of 343 documented stones occurred on 2 September 2015 in Turkey and is the first documented howardite fall. Cosmogenic isotopes show that Sariçiçek experienced a complex cosmic ray exposure history, exposed during ~12–14 Ma in a regolith near the surface of a parent asteroid, and that an ~1 m sized meteoroid was launched by an impact 22 ± 2 Ma ago to Earth (as did one third of all HED meteorites). SIMS dating of zircon and baddeleyite yielded 4550.4 ± 2.5 Ma and 4553 ± 8.8 Ma crystallization ages for the basaltic magma clasts. The apatite U-Pb age of 4525 ± 17 Ma, K-Ar age of ~3.9 Ga, and the U,Th-He ages of 1.8 ± 0.7 and 2.6 ± 0.3 Ga are interpreted to represent thermal metamorphic and impact-related resetting ages, respectively. Petrographic, geochemical and O-, Cr- and Tiisotopic studies confirm that Sariçiçek belongs to the normal clan of HED meteorites. Petrographic observations and analysis of organic material indicate a small portion of carbonaceous chondrite material in the Sariçiçek regolith and organic contamination of the meteorite after a few days on soil. Video observations of the fall show an atmospheric entry at 17.3 ± 0.8 kms-1 from NW, fragmentations at 37, 33, 31 and 27 km altitude, and provide a pre-atmospheric orbit that is the first dynamical link between the normal HED meteorite clan and the inner Main Belt. Spectral data indicate the similarity of Sariçiçek with the Vesta asteroid family (V-class) spectra, a group of asteroids stretching to delivery resonances, which includes (4) Vesta. Dynamical modeling of meteoroid delivery to Earth shows that the complete disruption of a ~1 km sized Vesta family asteroid or a ~10 km sized impact crater on Vesta is required to provide sufficient meteoroids ≤4 m in size to account for the influx of meteorites from this HED clan. The 16.7 km diameter Antonia impact crater on Vesta was formed on terrain of the same age as given by the 4He retention age of Sariçiçek. Lunar scaling for crater production to crater counts of its ejecta blanket show it was formed ~22 Ma ago

    Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR)

    Get PDF
    The NASA/ESA Mars Sample Return (MSR) Campaign seeks to establish whether life on Mars existed where and when environmental conditions allowed. Laboratory measurements on the returned samples are useful if what is measured is evidence of phenomena on Mars rather than of the effects of sterilization conditions. This report establishes that there are categories of measurements that can be fruitful despite sample sterilization and other categories that cannot. Sterilization kills living microorganisms and inactivates complex biological structures by breaking chemical bonds. Sterilization has similar effects on chemical bonds in non-biological compounds, including abiotic or pre-biotic reduced carbon compounds, hydrous minerals, and hydrous amorphous solids. We considered the sterilization effects of applying dry heat under two specific temperature-time regimes and the effects of γ-irradiation. Many measurements of volatile-rich materials are sterilization sensitive—they will be compromised by either dehydration or radiolysis upon sterilization. Dry-heat sterilization and γ-irradiation differ somewhat in their effects but affect the same chemical elements. Sterilization-sensitive measurements include the abundances and oxidation-reduction (redox) states of redox-sensitive elements, and isotope abundances and ratios of most of them. All organic molecules, and most minerals and naturally occurring amorphous materials that formed under habitable conditions, contain at least one redox-sensitive element. Thus, sterilization-sensitive evidence about ancient life on Mars and its relationship to its ancient environment will be severely compromised if the samples collected by Mars 2020 rover Perseverance cannot be analyzed in an unsterilized condition. To ensure that sterilization-sensitive measurements can be made even on samples deemed unsafe for unsterilized release from containment, contingency instruments in addition to those required for curation, time-sensitive science, and the Sample Safety Assessment Protocol would need to be added to the Sample Receiving Facility (SRF). Targeted investigations using analogs of MSR Campaign-relevant returned-sample types should be undertaken to fill knowledge gaps about sterilization effects on important scientific measurements, especially if the sterilization regimens eventually chosen are different from those considered in this report

    The Scientific Importance of Returning Airfall Dust as a Part of Mars Sample Return (MSR)

    Get PDF
    Dust transported in the martian atmosphere is of intrinsic scientific interest and has relevance for the planning of human missions in the future. The MSR Campaign, as currently designed, presents an important opportunity to return serendipitous, airfall dust. The tubes containing samples collected by the Perseverance rover would be placed in cache depots on the martian surface perhaps as early as 2023–24 for recovery by a subsequent mission no earlier than 2028–29, and possibly as late as 2030–31. Thus, the sample tube surfaces could passively collect dust for multiple years. This dust is deemed to be exceptionally valuable as it would inform our knowledge and understanding of Mars’ global mineralogy, surface processes, surface-atmosphere interactions, and atmospheric circulation. Preliminary calculations suggest that the total mass of such dust on a full set of tubes could be as much as 100 mg and, therefore, sufficient for many types of laboratory analyses. Two planning steps would optimize our ability to take advantage of this opportunity: (1) the dust-covered sample tubes should be loaded into the Orbiting Sample container (OS) with minimal cleaning and (2) the capability to recover this dust early in the workflow within an MSR Sample Receiving Facility (SRF) would need to be established. A further opportunity to advance dust/atmospheric science using MSR, depending upon the design of the MSR Campaign elements, may lie with direct sampling and the return of airborne dust
    corecore