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Abstract

In most studies aimed at localizing footprints of past selection, outliers at tails of the empirical distribution of a given test
statistic are assumed to reflect locus-specific selective forces. Significance cutoffs are subjectively determined, rather than
being related to a clear set of hypotheses. Here, we define an empirical p-value for the summary statistic by means of a
permutation method that uses the observed SNP structure in the real data. To illustrate the methodology, we applied our
approach to a panel of 2.9 million autosomal SNPs identified from re-sequencing a pool of 15 individuals from a brown egg
layer line. We scanned the genome for local reductions in heterozygosity, suggestive of selective sweeps. We also employed
a modified sliding window approach that accounts for gaps in the sequence and increases scanning resolution by moving
the overlapping windows by steps of one SNP only, and suggest to call this a ‘‘creeping window’’ strategy. The approach
confirmed selective sweeps in the region of previously described candidate genes, i.e. TSHR, PRL, PRLHR, INSR, LEPR, IGF1,
and NRAMP1 when used as positive controls. The genome scan revealed 82 distinct regions with strong evidence of
selection (genome-wide p-value,0.001), including genes known to be associated with eggshell structure and immune
system such as CALB1 and GAL cluster, respectively. A substantial proportion of signals was found in poor gene content
regions including the most extreme signal on chromosome 1. The observation of multiple signals in a highly selected layer
line of chicken is consistent with the hypothesis that egg production is a complex trait controlled by many genes.
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Introduction

‘Selection signatures’ are defined as regions of the genome that

harbour functionally important sequence variants and therefore

are or have been under either natural or artificial selection. The

physical extent of such signatures, up- and downstream of the

functional variant, is a consequence of the so-called hitchhiking

effect. As stated by Maynard Smith and Haigh [1], three patterns

are generated locally around the position of a favorable mutation.

First, the density of segregating sites decreases in adjacent regions

so that the level of variability will be reduced [2], [3]. Second, the

site frequency spectrum (SFS), which describes the frequency of

allelic variants, shifts from its neutral expectation towards a

relative excess of extreme (rare or high) frequencies [4], [5]. Third,

a specific linkage disequilibrium (LD) pattern emerges around the

target of positive selection relative to what is expected under

neutrality [6], [7].

The search for molecular signatures of positive selection has been

a matter of intense research in recent years, motivated by the hope

to associate genes that experienced recent strong selection with

functions and phenotypes (for review see [8], [9]. These studies have

resulted in the development of various statistics aimed to detect

selection at the DNA level in population samples. The methods used

are based either on the site frequency characteristics (focusing on

single loci) or on properties of haplotypes segregating in populations.

In site frequency based methods the level of DNA polymor-

phism is assessed for a very large number of loci on a genome-wide

scale within populations. Conceptually, the goal is to identify

genomic regions with a reduced variation or a different shape of

the SFS than the norm of the genome. These methods essentially
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assume that demographic effects and population structure affect

the whole genome in the same fashion; on the other hand positive

selection should influence only individual genes and, through the

hitchhiking affect, the surrounding regions. This concept has been

used on a genome-wide scale to detect signals of past selection in

humans and other species [10]–[][][][][15]. Genomic scans for

local variability have also been conducted in chicken [16], [17].

The last authors introduced the so-called ‘‘Pooled Heterozygosity’’

(HP) statistic, a variability estimator based on allele counts across

sliding windows of adjacent loci to look for areas that deviate from

the norm.

It is important to note that many of these studies have focused

on the observed distribution of a given test statistic, assuming that

loci in the tails of this distribution have been targets of recent

selection [18]. Although this approach to detect selective sweeps in

genome-wide data sets seems appealing, questions about the

statistical validity of this strategy have been raised [19], [20], [9].

Since, as highlighted by Williamson et al. [21], the prevalence of

selection in the genome is unknown, the ‘‘empirical p-value’’

strategy does not directly test the hypothesis of selection at any

putative locus and provides no means for quantifying how

common selection is across the genome. For instance, the null

hypothesis of selective neutrality could be true for the entire

genome, in which case even the most extreme values would carry

no information regarding selection.

Kim and Stephan [22] proposed the composite likelihood ratio

(CLR) test to localize selective sweeps in subgenomic regions based

on the change in the shape of the allele frequency spectrum. They

used coalescent simulations to derive a distribution of the test

statistic under the null hypothesis of no selection. However, the use

of simulation requires accurately mimicking population demogra-

phy as well as making assumptions that may or may not hold (e.g.,

uniform recombination or mutation rate across the genome, etc).

In a similar study Nielsen et al. [23] extended the CLR test to

derive the expected background pattern of variability from the

data itself, rather than from a population genetic model. This

approach compares a neutral null model for the evolution of a

genomic window with a selective sweep model and can be applied

to species having sufficient genome wide SNP data available [7],

[21], [24]. It appears that CLR is one of the few metrics that

robustly tests the statistical significance of a putative region for the

hypothesis of positive selection.

In this study, we compared genome-wide HP estimates based on

2.9 million SNPs from a commercial line of egg laying chickens

(see methods). We employed a modified sliding window approach

(referred to as a ‘‘creeping window’’, CW) and validated the

method by confirming the identification of previously described

candidate genes. Furthermore, we used a permutation method

that uses the original allele frequency spectrum of the genome

under study to define the significance thresholds for the HP values.

In total 132 genes or genomic regions that display patterns of

genetic variation consistent with the hypothesis of positive

selection are presented, comprising some striking examples of

selective sweeps that span over several megabases.

Results and Discussion

Creeping windows
Scanning a genome by sliding a non-(or partly) overlapping

window of uniform length along the sequence is a common

strategy in site frequency based methods. The primary objective of

such ‘‘sliding windows’’ (SW) strategies is to reduce the noisiness of

single-locus statistics by combining data from several adjacent

markers. The window size is often subjectively determined which

can influence the final results and interpretations. Regarding the

fact that continuous stretches of HP values (or any site frequency

based metric) are correlated to an extent determined by the level of

linkage disequilibrium, one may suggest adjusting window sizes

such that the extent of LD is reflected [25]. However, it remains

unclear how to account for the age of selective sweeps in view of

their diverse length, as well as for varying levels of local LD across

the genome or between populations. The CW method we used

(see Methods) has the advantage of simplicity and is applicable

with all site frequency based statistics. In addition, the algorithm

accounts for the non-uniform distribution of markers, so that

artifact signals originating from conflicting effects of genomic gaps

are avoided. Figure 1 illustrates lack of uniformity in the

distributions of inter-marker distance and gap size.

To evaluate the performance of the CW approach the

distribution of pooled heterozygosity profiles was compared with

different implementations of the SW approach. Applying the CW

strategy with HP values genome-wide resulted in 862’400 windows.

Figure 1. Histograms of (A) distance between neighboring
markers and (B) gap size in the final data set.
doi:10.1371/journal.pone.0049525.g001

Testing the Significance of a Selective Sweep
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The mean number of SNPs in a window was 199678 with

window size varying between 30 and 40 Kb, having a median of

39’909 bp (Figure 2). While 40 Kb was the specified standard,

shorter windows may result from gaps in the CW approach.

In the SW scenarios we walked through the genome with non-

or partly overlapping windows of size 40 Kb in steps of 0 to

20 Kb, respectively (data are shown only for the 20 Kb

overlapping scenario). A panel of 40’289 windows in the partly

overlapping scenario was created, which is explicitly a function of

the extent of overlap between consecutive windows. Figure 3

illustratively compares the negative end of the ZHP distribution for

61’538 creeping versus 2658 sliding windows, respectively, across

chromosome GGA5.

The comparison of the two profiles shows the following main

discrepancies:

i) The magnitudes of extreme signals obtained with the CW

approach are higher than those obtained with the SW

approach (e.g. at position A);

ii) The CW approach reports clear signatures of selection that

are missed by the SW approach (e.g. at position B)

iii) The SW approach produces some spurious signals that are

not confirmed by the CW analysis as these may be artifacts

caused by gaps in the sequence (e.g. at position C)

iv) The CW approach identifies clear stretches of a selective

sweep, with a typical gradient of decreasing ZHP values

from both sides, which is much less pronounced in the SW

approach (e.g. at position D)

These examples highlight the possibility that some selection

signatures may have been missed or erroneously accounted for in

previous studies based on SW approaches. In general, our results

indicate an improved efficiency in signal detection for scanning

genomes with the CW strategy. However, it must be noticed that

intensified resolution sharply enlarges the number of windows,

which affects the multiple testing issue.

)[?-}section_four]>

With the example of chromosome GGA5 (Figure 3) the ability

to detect a selection signature using creeping windows of 40 kb is

confirmed by localizing the previously described TSHR gene [17],

along with two typical selective sweeps of different size depicting

valleys of heterozygosity (D). One distinct sweep is observed at

chromosomal position 19.3 to 21’5 Mbp harboring the APIP,

PDHX, CD44, ACTC1, GPIAP1, NAT10, RAG1 and RAG2 genes.

Another evident sweep is spanned over 1.27 to 1.72 Mbp

overlapping the IGHMBP2, SYT12, Cor6, SIRT3, RIC8A, NAD-

SYN1 and ZDHHC13 genes.

Revealing genome-wide significant signals
Faced with problems in determining the null distribution of a

test statistic, researchers often focus on top-ranking SNPs and

avoid specifying testable hypotheses. However, an outlier locus is

not necessarily indicative of selection. In such an approach there

are basically no a priori criteria available for deciding how extreme

a region needs to be in order to claim a selection signal and the

significance cutoffs are determined subjectively, rather than being

derived from a model. Using permutation re-sampling in this study

we derived a null distribution for testing the genome-wide

significance under the null hypothesis of absence of selection (see

Methods). Briefly, this permutation method maintains the original

structure observed in the real data set such as the SNP density, and

the background distribution of HP values is computed after the

frequencies of the SNPs are shuffled.

Evidence of positive selection was investigated by assessing

variation in allele frequency across the genome. In total, 862’400

windows were tested. The mean HP value was estimated as

0.41860.045 and the lowest HP was 0.196 for a region on

chromosome GGA1. Figure 4 compares the distribution of HP

values from the observed data against the profile of the lowest HP

values recorded in each permutation. As shown, the lower limit of

HP values obtained from 10’000 permuted datasets was 0.250

whereas the lowest HP value from real data was 0.196.

Accordingly, we placed the critical value for claiming candidate

selective sweeps with an empirical genome-wide significance level

P#0.001 at HP = 0. 252 (ZHP = 23.70) and windows below this

threshold were considered to represent selection signals. In total,

1816 putative windows, many of them overlapping, with a

statistically significant (P#0.001) departure from the norm of

allelic variability were observed. This number exceeds the number

obtained when we just accept the 0.1 per cent smallest (i.e. 862)

values, as done in the usual outlier approach. However, with less

stringent thresholds on the empirical p-values, for instance p#0.01

(ZHP,23.50, genome-wide), only 3846 significant windows are

Figure 2. Distributions of (A) the number of SNPs per window
and (B) the size of 862’400 windows creeping along chicken
chromosomes GGA1 to GGA28.
doi:10.1371/journal.pone.0049525.g002
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obtained, which is considerably less than the 1% (8624) top-ranked

signals.

A striking feature that emerges when examining the distribution

of allelic variability via the CW strategy is that diversity values tend

to cluster together. This results in consistent signatures of selective

sweeps for adaptive alleles, which in some cases extend over

stretches of several megabasepairs. We considered these adjacent

signatures as ‘‘distinct’’ if they typically exhibited the pattern of

decaying HP by distance to both sides (cf. position D in Figure 3).

Across the genome, we counted signals of pooled heterozygosity

(P#0.001) that were accompanied by at least two consecutive

significant windows (P#0.05, genome-wide). In total, we observed

82 clusters representing strong evidence of selective sweeps.

However, we believe that additional loci further down the list

deserve closer examination in follow-up studies. The number of

detected regions rose to 132 when the significance threshold of

pooled heterozygosity was set to P#0.01. Table S1 presents test

statistics including the number of signals on each chromosome and

positions for the full panel of regions that fell below HP = 0.272

(P,0.01, genome-wide). The observation of multiple signals in a

commercial layer line is consistent with the hypothesis that egg

production is a complex trait controlled by many genes.

In order to visualize the chromosomal distribution of significant

signals, we plotted the ZHP statistic against genomic position

(Figure 5). Furthermore, a detailed graphical representation of the

ZHP signals for the 28 autosomes is reported in supporting

information (Figures S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11,

S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, S24,

S25, S26, S27, S28). It is evident that the signals are non-

uniformly distributed across chromosomes and chromosome

segments.

Simulation
To evaluate the performance of our method for delimiting the

significance of a selective sweep, we performed computer

simulations. We considered models involving both neutrality

(Neut) and a selective sweep (SP) at a single locus. The genomic

distribution of SNPs and selective sweeps (i.e., one Sweep per

10 Mb) in the simulation scheme corresponds roughly to the

chicken genome analyzed with the current SNP array. Two HP

sets with 23’265 and 22’955 windows were calculated in the Neut

and the SP models, respectively. The mean NeutHP was estimated

as 0.28260.014 with a minimum of 0.234 which dropped to 0.224

in the sweep scenario. Figure 5. a, b respectively, depicts the

profile of HP values in the Neut and the SP simulations along with

Figure 3. The negative end of the ZHP distribution from the creeping windows (CW) versus the sliding windows (SW) strategy is
presented along GGA5. The horizontal dashed line stands for the significance level at P#0.001 (ZHP = 23.70, genome-wide) and vertical gridlines
help to compare similar signals between plots. Capital letters highlight positions where (A) CW produces more pronounced signals than SW; (B) SW
misses signals found by CW; (C) SW produces spurious signals not confirmed by CW; and (D) CW finds classic long-range sweeps with typical patterns.
A strong signal is found at the position of the TSHR gene already described by Rubin et al. (2010).
doi:10.1371/journal.pone.0049525.g003
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the location of the selective sweep in the middle of the simulated

chromosome.

We applied our test statistic to both simulated data sets. For this,

allele frequencies from each data set were randomly shuffled across

chromosomal positions and a profile of the smallest HP values was

generated from 1000 iterations. To compare the distribution of HP

profiles, we plotted the kernel density from both scenarios against

their minimum profiles from permutations (Figure 6. c). As shown

a perfect overlap is evident between both simulations and

corresponding permutations except for HP windows representing

the selective sweep. The smallest HP value from the neutral

simulation is 0.234 which is distant from the minimum HP value

from permutations (0.226). Therefore, the test correctly assigns a

non-significant p-value#0.62 to the lowest heterozygosity window

of the neutral simulation. On the other hand, in the selection

scenario, the lower limit of SPHP = 0.224 was only exceeded in

Figure 4. Distribution patterns of the HP profile from 862’400 windows creeping over the genome. Pink and blue densities represent,
respectively, the observed and the panel of recorded lowest HP-values from 10’000 re-sampling runs in real data. Windows with HP#0.252 represent
significant signals at the empirical error level P#0.001. As indicated, 1816 windows characterize 82 selected regions with a more extreme local
homozygosity than expected under neutrality.
doi:10.1371/journal.pone.0049525.g004

Figure 5. The negative tail of the ZHP distribution presented along GGA1 to GGA28. Each dot represents a CW of 40 Kb and arrows point
at the location of candidate genes (Table 1) and genes with reported associations in the literature. The horizontal dashed line indicates the
significance threshold at P#0.001 (Genome-wide ZHP = 23.7).
doi:10.1371/journal.pone.0049525.g005
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Figure 6. A graphical representation of simulation results from two genetic models. Neut and SP abbreviate genetic models with neutral
and selective sweep along with Neut.per and SP.per representing corresponding distribution of permutation. HP profiles estimated from 23’265 and
22’955 creeping windows are plotted across a chromosome of 10 Mb in Neutral (a) and Sweep (b) models, respectively. A distinct valley of
homozygosity at the middle of chromosome represents the simulated sweep. (c) Density distributions of HP profiles form both models are depicted
along with 1000 resamples.
doi:10.1371/journal.pone.0049525.g006

Testing the Significance of a Selective Sweep
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three permutation resamples with a minimum of HP = 0.222. This

signifies that the simulated sweep is conservatively detected at a

significance level of p#0.003 (SPHP = 0.224).

Validation with candidate genes
The thyroid-stimulating hormone receptor (TSHR) gene, a well-

documented example of positive selection in the chicken [17] was

used as a positive control to examine the validity of our approach.

We extended the analysis to additional candidate genes known to

be related with production traits and, therefore, being potentially

under positive selection. For instance, the insulin-like growth

factor 1 (IGF1) is known to be associated with growth, body

composition, and skeleton integrity in chickens [26], [27].

Candidate genes were identified from the literature and databases

including NRAMP1, PRL, PRLHR, INSR, LEPR and IGF1. We

could not include GHR, PRLR and the BCDO2 gene causing yellow

skin colour in our validation panel because they were either

located on chromosome Z or the SNP coverage in the

corresponding regions was not sufficient to effectively test the

variability of these regions. The regions surrounding the genes

displayed an elevated homozygosity compared to the genome-wide

average. Table 1 presents the names, position and summary

statistics for the chosen panel.

The results revealed a significantly different HP profile in most

of the candidate regions. For example, a window perfectly

overlapping the IGF1 gene on GGA1 represents the most extreme

signal in the corresponding region. Consistent with Rubin et al.

[17], we further observed locally reduced variation for a short

region surrounding the TSHR gene on GGA5 (Figure 3). In

contrast, some regions contained several consecutive windows with

consistently low HP values. For instance, the Leptin receptor gene

(LEPR), a candidate gene with a central role for Leptin signaling

affecting feed efficiency, displays statistically significant low-HP

windows extended over several Mb (Figure S8), possibly indicating

that this locus has been subject to recent selective pressures. In

addition to the age of selection, several factors may affect the size

of a selective sweep, like the local recombination rate, whether the

selected variant ever reached complete fixation, the number of

generations it took before fixation and any population admixture

at a time point after the sweep initially occurred.

Functional annotation of regions under selection
We annotated the genomic regions harboring significant signals

using the map viewer program, and by aligning the positions to the

second draft of the chicken genome sequence assembly, to reveal

genes and ESTs located in the respective region. Table 2

summarizes statistics for a collection of selected regions across

the genome harboring the strongest signals along with the distinct

sweeps. The window with the smallest HP value (HP = 0.196,

P,0.001) was observed on GGA1 embedded within 130’539’515

to 130’579’189 bp. This is a poor gene content region with no

coding sequence mapped. The region, however, depicts the

pattern of a distinct sweep spanning over 2 Mb (Figure S1). We

extended the window to its decaying domains in both directions up

to 700 kb to find the biologically most interesting candidate gene

in this region. Of the 8 ESTs in this region, haloacid

dehalogenase-like hydrolase domain containing 1A, was the only

gene in the region. HDHD1 is a conserved gene in many species

and very little is known about its biological importance. Another

strong signature of selection on GGA2 (HP = 0.203, P,0.001)

matched the Calbindin 1 gene. CALB1 is a 28,000-kDa calcium-

binding protein, which fluctuates in a circadian fashion during the

daily egg cycle, in close temporal association with eggshell

calcification [33], [34]. It was shown that the pattern of CALB1

expression is related to eggshell quality [33] and eggshell

abnormalities in layer chickens [35]. Association was also

demonstrated between CALB1 gene expression and reduction of

eggshell thickness after xenoestrogen treatment [36]. Moreover, on

chromosome 4, a region harboring the secreted phosphoprotein 1

or Osteopontin gene showed a signal of positive selection (P-

value,0.01). It was suggested that SPP1 could be involved in the

mechanism controlling the arrest of eggshell calcification [37] and

the specific occlusion of SPP1 into calcite during mineralization

may influence eggshell structure and thereby modify its fracture

resistance [38]. There are also reports that polymorphisms within

the Osteopontin gene are associated with 5-week body weight in

egg laying chickens [39]. Further to the strong signal overlaying

the Nramp1/SLC11A1 gene, which is a well documented candidate

for immune traits in chickens, a distinct sweep (P,0.001) was

detected on chromosome 3 embedding the gene cluster Gallinacin

1–13. This cluster is designated densely within a 86-Kb distance

and encodes Avian beta-defensins, a family of antimicrobial

peptides that are capable of killing a broad spectrum of pathogens

and play a critical role in innate immunity in chickens [40]. Beta-

Table 1. Summary statistics of the pooled heterozygosity metric for selection signature in candidate genes.

Gene Chr Position-bp HP P# Function/association

IGF1 1 57’327’750..
57’376’178

0.24 0.001 Key regulator of muscle development
and energy metabolism in birds.

[17], [26], [27],
[28]

PRL 2 59’724’582..
59’730’725

0.26 0.01 Egg laying pattern and production [28]

TSHR 5 43’202’356..
43’250’961

0.25 0.001 Inhibitory effect on Growth hormone
secretion

[17]

PRLHR 6 31’242’680..
31’243’785

0.24 0.001 Governing early embryonic axis formation [29]

NRAMP1 7 24’283’380..
24’363’380

0.21 0.001 Natural resistance to Salmonella
infection and macrophage function

[30], [31]

LEPR 8 29’125’599..
29’156’553

0.21 0.001 Affecting feed efficiency [32]

INSR 28 3’431’232..
3’471’081

0.27 0.01 Insulin signaling [17]

doi:10.1371/journal.pone.0049525.t001
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defensins are also present in different compartments (eggshell, egg

white, and vitelline membranes) of the egg and are expected to be

involved in the protection of the embryo during its development

and to contribute to the production of pathogen-free eggs [41].

Some of the regions identified contain genes with biological

functions that were previously discussed in connection to traits

under selection in other species. For example, strong evidence of a

sweep reflected by a set of windows on GGA4 (P,0.001) involves

the bone morphogenetic protein receptor, type IB gene (BMPR1B)

which is a major determinant of ovulation rate and litter size in

sheep [42], [43]. A candidate gene affecting growth traits and with

a central role in regulating IGF gene, insulin-like growth factor

binding protein (IGFBP), also lies within a distinct sweep region on

GGA4 (Table 2). We also found several other regions harboring

genes with biological functions that could be related to (produc-

tion) traits. In general the annotation list (Table S1) is enriched

with genes of biological interest involved in carbohydrate

metabolism pathways, muscle-skeletal structure development,

solute carrier proteins, calcium signaling pathways and the

immune system.

The first genome-wide scan of selection for local homozygosity

in the chicken was performed by ICPMC [16] using sequence data

from only 3 individuals representing layers, broilers and the Red

Jungle fowl, respectively. In a more comprehensive study, Rubin et

al. [17] re-sequenced pooled DNA from a number of commercial

and domestic lines to identify selective sweeps of favorable alleles.

Local heterozygosity was calculated in sliding windows of 40 Kb,

and seven putative selective sweeps were detected in layers at 6

standard deviations away from the genome mean. In addition to

the aforementioned candidate genes TSHR, INSR and IGF1, two

out of seven regions overlapped with regions revealed in the

present study. Identification of these regions in two independent

studies supports the hypothesis that these regions have strong

signatures of selection and are likely to be true positives.

There are, however, several regions with strong evidence of

selection identified in our study that were not reported previously.

Apart from genetic drift, the differences may result in part either

from the insufficient power of the tests employed or from

insufficient coverage in the datasets scanned. The SNP calling

depth in the current study was at least four times larger than the

Table 2. Collected panel of genomic regions identified as candidate selective sweeps.

Chr Positiona HP P Functionb Gene

1 129’979’844..
132’096’418

0.19 0.001 HDHD1A

2 77’468’964..
81’953’567

0.22 0.001 FASTKD3, CCT5, CMBL, ROPN1L, DAP,
ANKH

2 127’197’645..
129’637’001

0.20 0.001 Eggshell abnormalities CALB1

3 98’653’321..
98’693’223

0.20 0.001

3 109’525’540..
110’278’233

0.24 0.001 Production of pathogen-free eggs GAL1-13

4 9’972’965..
12’799’763

0.24 0.001 SOX3, GABRB1

4 47’835’606..
48282844

0.25 0.01 Eggshell fracture resistance, body
weight

SPP1

4 50’359’254..
51’663’078

0.23 0.001 Regulates the activity
of IGF1, 2 genes

IGFBP

4 59’893’444..
60’932’043

0.22 0.001 Major determinant of Litter
size in sheep

BMPR1B

6 64’439..
639’455

0.24 0.001

5 1’273’963..
1’717’264

0.26 0.01 IGHMBP2, SYT12, cor6, SIRT3, RIC8A,
NADSYN1, DHHC13

5 19’289’172..
21’554’715

0.24 0.001 APIP, CD44, ACTC1, GPIAP1, NAT10,
RAG1, RAG2

10 3’595’855..
4’183’588

0.24 0.001 HMG20A, LRRN6A, RCN2

12 5’756’755..
6’744’249

0.24 0.001 WNT7A, BARX1, MIRNLET7D, MIRNLET7F,
MIRNLET7A-1, HDAC11

12 16’889’808..
17’356’279

0.26 0.01 SHQ1, PPP4R2, PDZRN3

20 1’630’787..
2’136’985

0.24 0.001 EIF2S2, CHMP4B, E2F1, CBFA2T2

20 5’659’382..
7’543’732

0.26 0.01 CSE1L, STAU1, CCNDBP1, PPP1R3D, EYA2,
SULF2, CDH4

aPositions in normal format represent ‘‘distinct sweeps’’ revealed by the HP metric. A distinct sweep spans over numerous consecutive significant windows and depicts a
typical valley of heterozygosity.
bSignals overlapping genes with a previously described association.
doi:10.1371/journal.pone.0049525.t002
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one in earlier studies, which provides more reliable allele

frequency estimates. As demonstrated above, the scanning

resolution in the CW approach is much better than the one

obtained with SW, which raises the possibility that some signals

may have been missed or falsely reported in previous studies (cf.

Fig. 3). The inconsistencies can also originate from the lack of a

consensus threshold in empirical approaches. Earlier studies just

reported a fraction or the most extreme results (i.e. the 1% or

0.1% outliers in the empirical distribution), while in our study a

permutation-based genome-wide significance threshold was ap-

plied. Combining this conservative testing strategy with the

identification of candidate regions (characterized by a series of

significant windows) yielded a relatively low number (132) of

significant regions for selective sweeps (listed in Table S1) albeit of

high credibility. Finally, there are signals that probably do not

reflect historic selection at all, but rather arise from local genomic

differences in mutation or recombination rates, or are statistical

outliers in multiple genome-wide tests for significance.

Conclusions

We adapted a permutation-based re-sampling method as a valid

approach to test the significance of differences in local variability.

The method uses the original allele frequency spectrum of the

genome under study to maintain the observed SNP structure for

defining an empirical p-value. However, it assumes a uniform

demography across the genome and generates the null distribution

based on independence of allele frequency estimates between

neighboring SNPs which is violated in a real scenario. We realize

the permutation approach to testing for significance is very

straightforward, and it may be argued that more sophisticated

methods could generate a null distribution by performing neutral

simulations with a range of demographic and recombination

effects. However this bears its own challenges in defining the

models appropriately such that they reproduce the full SNP

structure in the data set, and even then we are not certain it would

yield greater sensitivity or specificity in detecting sweeps. We also

improved the resolution of signal detection using a creeping

window strategy. Genome-wide, 82 regions with strong evidence

of selection (P-value,0.001) were identified including genes

known to be associated with eggshell quality and immune system,

such as CALB1 and the GAL cluster. Our results confirm the

presence of selective sweeps in regions of previously described

candidate genes, in some cases spanning over intervals of several

megabases. The observation of multiple signals is consistent with

the hypothesis that egg production is a complex trait controlled by

many genes. The major challenge remains to distinguish true

signals from those due to genetic drift. One possible solution

involves analyzing separate populations with different phylogenetic

history, but selected for similar breeding goals (e.g. white-egg

layers and brown-egg layers), hypothesizing that true signals

generated by selection would overlap across the populations. Such

efforts are currently underway by the authors, along with

validation of results obtained with other methods of selection

signature detection. Further research should also try to verify

hypothesized relationships between gene networks rather than

single genes underlying the observed pattern of selection

signatures. Our results may be of future interest for identifying

signatures of artificial selection in commercial chicken breeds or as

additional evidence for any polymorphism that shows associations

with egg production traits.

Materials and Methods

Ethics statement
Samples were collected by veterinarians in the Lohmann

company in the course of a routine health check for diagnostic

reasons and a partition of these samples was used to extract DNA.

The authors collected no samples themselves.

Whole genome re-sequencing and SNP discovery
We studied a commercial brown layer line provided by

Lohmann Tierzucht GmbH. Blood samples were collected with

EDTA as anticoagulant from the wing vein of 15 unrelated female

birds originating from different sire families. DNA was extracted

from blood samples following a standard Phenol/Chloroform

extraction protocol [44]. DNA quality and concentration of each

sample was calculated and equal amounts of DNA of 15 samples

were mixed to produce the DNA pool for sequencing.

Sequencing libraries were constructed with paired-end DNA

sample preparation kits (Illumina) according to the manufacture’s

recommendations. Sequencing was carried out on an Illumina

Genome Analyzer IIx as 76 bp paired-end reads. We sequenced

two lanes of a flow cell yielding 22.0 Gb reads. Image analysis and

base calling was performed using the Genome Analyzer Pipeline

software.

Sequence reads were mapped against the third build of chicken

reference genome (yet to appear officially in the public databases).

Prior to mapping, the reference genome was repeat masked using

RepeatMasker. To further remove potentially problematic areas of

the genome, 16 mers occurring more than 5 times were also

masked. Reads were aligned to the reference genome using BWA

version 0.5.7 with default parameters. Samtools version 0.1.7 [45]

was used to remove potential PCR duplicates and to call SNPs.

About 112.0 million reads aligned to the genome with a mapping

quality score of 20 or more. A SNP was called when the position

was covered by at least 5 reads with a mapping quality score of 20

or over, and a base quality score of 20 or over.

Quality control and data filtering
The total number of SNPs detected in the pool was 4’540’269.

We checked the markers for redundant positions and applied a

number of rules to edit SNPs for further analysis. To minimize

incorporating false SNP, we used Phred scaled SNP quality score,

Q, which is related to the SNP calling error probability (p) by the

equation: Q = 2106log10(p). The average SNP quality score was

estimated as 100650. We kept polymorphisms with a minimum

score of 20 (99% accuracy) as an acceptable error rate (Figure S29

in the Online Data Supplement).

Polymorphisms detected had a read depth between 1 and

20’895. To reduce potential errors in SNP frequency estimates in

the pool of 15 individuals, and to preclude over-representation of

repetitive sequences, we only used polymorphisms with a read-

depth between 156and 506. In the final data set the average read

depth was 21.965.0. Figure S30 displays the distribution of the

depth of SNP calling in the final data set analyzed.

Analysis of the inter-marker distance between polymorphisms

revealed numerous genomic gaps (regions free of SNPs) on some

microchromosomes and chromosome Z of up to 5 Mb or larger.

Therefore, only autosomes GGA1-GGA28 were included in the

final analysis. In the filtered data the average inter-marker space

was estimated as 314.261362.1 bp (median = 97 bp), and 5503

gaps were present across the genome. Figure S31 presents a

genome wide image of marker distribution in the original SNP

panel. The accumulated proportion of genomic gaps was

estimated as 13.3% of the genome after filtering.
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In total 2’913’540 SNPs on 28 autosomes were included in the

final analysis. Average minor allele frequency (MAF) was

0.3160.11, and only 16’135 markers (0.5%) had a minor allele

frequency of less than 10% (Fig. S32). The pattern of MAF

distribution was fairly similar to those from already available

commercial 37 K and 60 K Illumina bead chips.

Detecting selective sweeps
To identify genomic regions that may have been targets of past

selection, we used the pooled heterozygosity (HP) statistic suggested

by Rubin et al. [17]. For a window with l loci,

HP~

2
Pl
i~1

ni

Pl
i~1

(Ni{ni)

Pl

i~1

niz
Pl
i~1

(Ni{ni)

� �2

where Ni is the number of reads at locus i and ni is the number of

reads of the most abundant allele at locus i. HP values were z-

transformed to ZHP values with mean = 0 and SD = 1 to facilitate

visualization of the outlying signals and comparison with previous

reports.

Sliding and creeping window approach
To facilitate comparisons of genomic regions with a higher

resolution we adopted a more expedient approach called

‘‘creeping window’’ to scan the entire genome for evidence of

selective sweeps (Figure 7). This is an intensified ‘‘sliding window’’

strategy that moves windows in steps of only one SNP forward

and, while passing over genomic gaps ,10 Kb, it skips gaps

.10 K and re-starts from the first SNP after a gap. We

acknowledge that specifying 40 kb as window size was subjective,

but it was motivated from previous studies and by the desire of

having a sufficiently large number of SNPs in a window.

According to Rubin et al. [17] spurious fixation signals are more

likely to occur when few chromosomes are sampled from a DNA

pool and inadequate numbers of polymorphic loci in windows are

analyzed. Thus to avoid noise in estimates of non-uniform

windows we removed windows ,30 K and those with less than

10 SNPs for further analyses.

Assessing statistical significance
We followed the ideas of Churchill and Doerge [46] in applying

a permutation approach to define empirical significance thresholds

for any individual window. For this, the SNP positions are taken as

fixed and allele frequencies are randomly shuffled across positions

in each iteration. This is followed by computing pooled

heterozygosities for creeping windows of 40 K from the shuffled

data and the genome wide lowest HP from a window $30 K

formed by $10 SNPs is stored. After repeating this procedure for n

iterations, the empirical threshold pertaining to error probability

P = 0.001 is the value cutting of the 0.001 quantile in the ordered

vector of minima. We ran the simulation with n = 10’000

iterations, computing HP values for 862’400 creeping windows in

each iteration. This approach conserves the genome structure, like

SNP densities and gap positions, and allows simulated data to be

randomly drawn from the allele frequency distribution of the

population under study. Hence, we do not assume any particular

population genetic model to generate the background allele

frequency spectrum, but the expected background pattern of

variability is given by the data.

Simulation
Program MSMS [47] was used to simulate genomic samples

under a coalescent model with mutation, recombination, and

constant population size. In the simulations, we assumed two

different scenarios: one is the reference population under neutral

conditions, and the other is the test population with a single site

Figure 7. A graphical comparison of two genome scanning strategies. sliding windows (SW) vs., creeping windows (CW). With SW a
chromosome is split into non (or partly) overlapping windows of 40 K and while passing over genomic gaps, it may not perfectly overlie a selective
sweep. CW implements an elevated resolution moving windows in steps of only one SNP forward. The approach bridges small (,10 K) gaps while it
stops at larger gaps and re-starts at the opposite side. CW always centers a window relative to a sweep position.
doi:10.1371/journal.pone.0049525.g007

Table 3. Parameters for the MSMS simulations.

Parameter Value

Sequence length l 10’000’000 bp

Sample size n 30

Population scaled mutation rate (per site) h 1028

Population scaled recombination rate (per site) r 1028

Effective population size Ne 10,000

Number of SNPs 50’000 bp

doi:10.1371/journal.pone.0049525.t003
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under positive selection without recurrent mutations. In each

model 100 replications of a chromosome of length = 10 Mbp and

sample size = 30 was simulated with a selective sweep evolving at

the middle of chromosome for the selection model. The list of

simulation parameters used is presented in Table 3. We later

simulated pooled NGS data from the genomic samples obtained

from MSMS by random sampling of 20 chromosomes in each site

independently which is an explicit approximation to the average

calling depth in the real data set. Allele frequencies from these data

sets were then used to estimate the profile of heterozygosity over

creeping windows in each single sample and averaged over the

number of replications.

Supporting Information

Figure S1 Chromosome wide distribution of variability
measured in overlapping windows of 40 k.

(PDF)

Figure S2 Chromosome wide distribution of variability
measured in overlapping windows of 40 k.

(PDF)

Figure S3 Chromosome wide distribution of variability
measured in overlapping windows of 40 k.

(PDF)

Figure S4 Chromosome wide distribution of variability
measured in overlapping windows of 40 k.

(PDF)

Figure S5 Chromosome wide distribution of variability
measured in overlapping windows of 40 k.

(PDF)

Figure S6 Chromosome wide distribution of variability
measured in overlapping windows of 40 k.

(PDF)

Figure S7 Chromosome wide distribution of variability
measured in overlapping windows of 40 k.

(PDF)

Figure S8 Chromosome wide distribution of variability
measured in overlapping windows of 40 k.

(PDF)

Figure S9 Chromosome wide distribution of variability
measured in overlapping windows of 40 k.

(PDF)

Figure S10 Chromosome wide distribution of variabil-
ity measured in overlapping windows of 40 k.

(PDF)

Figure S11 Chromosome wide distribution of variabil-
ity measured in overlapping windows of 40 k.

(PDF)

Figure S12 Chromosome wide distribution of variabil-
ity measured in overlapping windows of 40 k.

(PDF)

Figure S13 Chromosome wide distribution of variabil-
ity measured in overlapping windows of 40 k.

(PDF)

Figure S14 Chromosome wide distribution of variabil-
ity measured in overlapping windows of 40 k.

(PDF)

Figure S15 Chromosome wide distribution of variabil-
ity measured in overlapping windows of 40 k.
(PDF)

Figure S16 Chromosome wide distribution of variabil-
ity measured in overlapping windows of 40 k.
(PDF)

Figure S17 Chromosome wide distribution of variabil-
ity measured in overlapping windows of 40 k.
(PDF)

Figure S18 Chromosome wide distribution of variabil-
ity measured in overlapping windows of 40 k.
(PDF)

Figure S19 Chromosome wide distribution of variabil-
ity measured in overlapping windows of 40 k.
(PDF)

Figure S20 Chromosome wide distribution of variabil-
ity measured in overlapping windows of 40 k.
(PDF)

Figure S21 Chromosome wide distribution of variabil-
ity measured in overlapping windows of 40 k.
(PDF)

Figure S22 Chromosome wide distribution of variabil-
ity measured in overlapping windows of 40 k.
(PDF)

Figure S23 Chromosome wide distribution of variabil-
ity measured in overlapping windows of 40 k.
(PDF)

Figure S24 Chromosome wide distribution of variabil-
ity measured in overlapping windows of 40 k.
(PDF)

Figure S25 Chromosome wide distribution of variabil-
ity measured in overlapping windows of 40 k.
(PDF)

Figure S26 Chromosome wide distribution of variabil-
ity measured in overlapping windows of 40 k.
(PDF)

Figure S27 Chromosome wide distribution of variabil-
ity measured in overlapping windows of 40 k.
(PDF)

Figure S28 Chromosome wide distribution of variabil-
ity measured in overlapping windows of 40 k.
(PDF)

Figure S29 Phred quality score distribution.
(PDF)

Figure S30 Distribution of the calling read of SNPs in
final data set.
(PDF)

Figure S31 A genome wide inter marker distance
between neighboring markers before data cleaning.
(PDF)

Figure S32 Frequency distribution of minor allele
frequencies involved in final analysis.
(PDF)

Table S1 The list of genomic regions likely to be under
selection (P,0.01, genome-wide).
(DOC)
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