776 research outputs found

    Anatomy of a Dansgaard-Oeschger warming transition: High-resolution analysis of the North Greenland Ice Core Project ice core

    Get PDF
    Large and abrupt temperature oscillations during the last glacial period, known as Dansgaard‐Oeschger (DO) events, are clearly observed in the Greenland ice core record. Here we present a new high‐resolution chemical (2 mm) and stable isotope (20 mm) record from the North Greenland Ice Core Project (NGRIP) ice core at the onset of one of the most prominent DO events of the last glacial, DO‐8, observed ∼38,000 years ago. The unique, subannual‐resolution NGRIP record provides a true sequence of change during a DO warming with detailed annual layer counting of very high depth resolution geochemical measurements used to determine the exact duration of the transition. The continental ions, indicative of long‐range atmospheric loading and dustiness from East Asia, are the first to change, followed by the snow accumulation, the moisture source conditions, and finally the atmospheric temperature in Greenland. The sequence of events shows that atmospheric and oceanic source and circulation changes preceded the DO warming by several years

    Atlantic Ocean circulation during the Younger Dryas : insights from a new Cd/Ca record from the western subtropical South Atlantic

    Get PDF
    Author Posting. © American Geophysical Union, 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 18 (2003): 1086, doi:10.1029/2003PA000888.Benthic foraminiferal Cd/Ca from an intermediate depth, western South Atlantic core documents the history of southward penetration of North Atlantic Intermediate Water (NAIW). Cd seawater estimates (CdW) for the last glacial are consistent with the production of NAIW and its export into the South Atlantic. At ∼14.5 ka concurrently with the onset of the Bølling-Allerød to Younger Dryas cooling, the NAIW contribution to the South Atlantic began to decrease, marking the transition from a glacial circulation pattern to a Younger Dryas circulation. High CdW in both the deep North Atlantic and the intermediate South Atlantic imply reduced export of deep and intermediate water during the Younger Dryas and a significant decrease in northward oceanic heat transport. A modern circulation was achieved at ∼9 ka, concurrently with the establishment of Holocene warmth in the North Atlantic region, further supporting a close linkage between deepwater variability and North Atlantic climate.This work was supported by an MIT John Lyons Fellowship, a WHOI Ocean and Climate Change Institute Fellowship, and NSF grant OCE96-33499

    Continental-scale variation in otolith geochemistry of juvenile American shad (Alosa sapidissima)

    Get PDF
    Author Posting. © NRC Research Press, 2008. This article is posted here by permission of NRC Research Press for personal use, not for redistribution. The definitive version was published in Canadian Journal of Fisheries and Aquatic Sciences 65 (2008): 2623-2635, doi:10.1139/F08-164.We assembled a comprehensive atlas of geochemical signatures in juvenile American shad (Alosa sapidissima) to discriminate natal river origins on a large spatial scale and at a high spatial resolution. Otoliths and (or) water samples were collected from 20 major spawning rivers from Florida to Quebec and were analyzed for elemental (Mg:Ca, Mn:Ca, Sr:Ca, and Ba:Ca) and isotope (87Sr:86Sr and δ18O) ratios. We examined correlations between water chemistry and otolith composition for five rivers where both were sampled. While Sr:Ca, Ba:Ca, 87Sr:86Sr, and δ18O values in otoliths reflected those ratios in ambient waters, Mg:Ca and Mn:Ca ratios in otoliths varied independently of water chemistry. Geochemical signatures were highly distinct among rivers, with an average classification accuracy of 93% using only those variables where otolith values were accurately predicted from water chemistry data. The study represents the largest assembled database of otolith signatures from the entire native range of a species, encompassing approximately 2700 km of coastline and 19 degrees of latitude and including all major extant spawning populations. This database will allow reliable estimates of natal origins of migrating ocean-phase American shad from the 2004 annual cohort in the future.This work was funded by National Science Foundation (NSF) grants OCE-0215905 and OCE-0134998 to SRT and by an American Museum of Natural History Lerner–Gray Grant for Marine Research and a scholarship from SEASPACE, Inc., to BDW

    Core correlations

    Get PDF

    Hermatypic Coral Growth Banding as Environmental Recorder

    Get PDF
    Study of incremental banding in coral skeletons was initiated by Ma and later extended by Wells and others. More recently, discrete annual banding in the skeletons of certain hermatypic corals has been described. Here we present an analysis of annual band width measurements from Bermuda corals which relates, through regression techniques, coral band time series to air temperature and air pressure variations. Our results indicate that coral bands record important aspects of their environment and therefore become useful where reconstruction of palaeoclimatic variables is of interest. Specifically the coral time series may be used as a palaeotemperature indicator or, when coupled with relatively well established palaeotemperatures, for palaeobarometric pressure determinations. Derived series of otherwise unobtainable palaeovariables are important not only for work on coral physiology, but also for construction and testing of climatic models; in this later instance information on palaeopressure is particularly desirable

    Proportions of Convective and Stratiform Precipitation Revealed in Water Isotope Ratios

    Get PDF
    Tropical and midlatitude precipitation is fundamentally of two types, spatially-limited and high-intensity convective or widespread and lower-intensity stratiform, owing to differences in vertical air motions and microphysical processes governing rain formation. These processes are difficult to observe or model and precipitation partitioning into rain types is critical for understanding how the water cycle responds to climate changes. Here, we combine two independent data sets – convective and stratiform precipitation fractions, derived from the Tropical Rainfall Measuring Mission satellite or synoptic cloud observations, and stable isotope and tritium compositions of surface precipitation, derived from a global network – to show that isotope ratios reflect rain type proportions and are negatively correlated with stratiform fractions. Condensation and riming associated with boundary layer moisture produces higher isotope ratios in convective rain, along with higher tritium when riming in deep convection occurs with entrained air at higher altitudes. Based on our data, stable isotope ratios can be used to monitor changes in the character of precipitation in response to periodic variability or changes in climate. Our results also provide observational constraints for an improved simulation of convection in climate models and a better understanding of isotope variations in proxy archives, such as speleothems and tropical ice

    Persistent suborbital climate variability in marine isotope stage 5 and termination II

    Get PDF
    New surface water records from two high sedimentation rate sites, located in the western subtropical North Atlantic near the axis of the Gulf Stream, provide clear evidence of suborbital climate variations through marine isotope stage (MIS) 5 persisting even into the warm peak of the interglaciation (substage 5e). We found that the amplitude of suborbital climate oscillations did not vary significantly for the whole of MIS 5, implying that ice volume has little or no influence on the amplitude of suborbital climate variability in this region. Although some records suggest that longer suborbital variations (4–10 kyr) during MIS 5 are linked to deepwater changes, none of the existing records is of sufficient resolution to assess if a linkage occurred for oscillations shorter than 4 kyr. However, when examined in conjunction with published data from the Norwegian Sea, new evidence from the subpolar North Atlantic suggests that coupled surface-deepwater oscillations occurred during the penultimate deglaciation. This supports the hypothesis that during glacial and deglacial times, ocean-ice interactions and deepwater variability amplify suborbital climate change at higher latitudes. We suggest that during the penultimate deglaciation the North Atlantic deepwater source varied between Nordic Sea and open North Atlantic locations, in parallel with surface temperature oscillations

    Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula)

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10933-009-9387-7.We present the Holocene sequence from Lago Enol (43°16′N, 4°59′W, 1,070 m a.s.l.), Cantabrian Mountains, northern Spain. A multiproxy analysis provided comprehensive information about regional humidity and temperature changes. The analysis included sedimentological descriptions, physical properties, organic carbon and carbonate content, mineralogy and geochemical composition together with biological proxies including diatom and ostracod assemblages. A detailed pollen study enabled reconstruction of variations in vegetation cover, which were interpreted in the context of climate changes and human impact. Four distinct stages were recognized for the last 13,500 years: (1) a cold and dry episode that includes the Younger Dryas event (13,500–11,600 cal. year BP); (2) a humid and warmer period characterizing the onset of the Holocene (11,600–8,700 cal. year BP); (3) a tendency toward a drier climate during the middle Holocene (8,700–4,650 cal. year BP); and (4) a return to humid conditions following landscape modification by human activity (pastoral activities, deforestation) in the late Holocene (4,650–2,200 cal. year BP). Superimposed on relatively stable landscape conditions (e.g. maintenance of well established forests), the typical environmental variability of the southern European region is observed at this site.The Spanish Inter-Ministry Commission of Science and Technology (CICYT), the Spanish National Parks agency, the European Commission, the Spanish Ministry of Science, and the European Social Fund

    Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula)

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10933-009-9387-7.We present the Holocene sequence from Lago Enol (43°16′N, 4°59′W, 1,070 m a.s.l.), Cantabrian Mountains, northern Spain. A multiproxy analysis provided comprehensive information about regional humidity and temperature changes. The analysis included sedimentological descriptions, physical properties, organic carbon and carbonate content, mineralogy and geochemical composition together with biological proxies including diatom and ostracod assemblages. A detailed pollen study enabled reconstruction of variations in vegetation cover, which were interpreted in the context of climate changes and human impact. Four distinct stages were recognized for the last 13,500 years: (1) a cold and dry episode that includes the Younger Dryas event (13,500–11,600 cal. year BP); (2) a humid and warmer period characterizing the onset of the Holocene (11,600–8,700 cal. year BP); (3) a tendency toward a drier climate during the middle Holocene (8,700–4,650 cal. year BP); and (4) a return to humid conditions following landscape modification by human activity (pastoral activities, deforestation) in the late Holocene (4,650–2,200 cal. year BP). Superimposed on relatively stable landscape conditions (e.g. maintenance of well established forests), the typical environmental variability of the southern European region is observed at this site.The Spanish Inter-Ministry Commission of Science and Technology (CICYT), the Spanish National Parks agency, the European Commission, the Spanish Ministry of Science, and the European Social Fund
    corecore