26 research outputs found

    Outcome of revascularization therapy in traumatized immature incisors

    Get PDF
    Background: The aim of this retrospective analysis was to evaluate the clinical and radiological outcome of revascularization therapy in traumatized permanent incisors to determine whether this approach could be implemented into clinical routine. Methods: A total of 16 traumatized incisors (either avulsion or severe luxation/intrusion) with open apices (> 1 mm) that underwent revascularization following a standardized protocol were analyzed with a mean follow-up of 22 months. Radiographs and clinical parameters (such as root length, pulp space, dentin wall width, apical foramen, alveolar bone loss, ankylosis/mobility, supra−/infraposition, discoloration, probing depth) were compared pre- and postoperatively and statistically analyzed. Results: Over the follow-up period, 81.3% of the teeth survived revascularization and regained sensitivity, while 18.7% failed, as they had to be extracted due to serious root resorption. Regarding radiographic outcomes a significant difference could only be found in the decrease of apical foramina (p = 0.04). The other parameters showed no significant difference between pre- and postoperative measurements. More than half of the teeth (56.3%) developed root resorptions and 31.3% displayed signs of ankylosis and 92.9% developed discolorations during follow-up. However, 85.7% of the teeth maintained the bone level and outcomes of mobility showed a significant solidification. Conclusions: Revascularization is a promising approach for the treatment of immature incisors to regain sensitivity and to enhance apical closure and at least to maintain alveolar bone in terms of a socket preservation. Further studies have to be performed to determine ideal conditions (type of trauma, age, width of apical foramen) for a revascularization

    FBXL4-Related Mitochondrial DNA Depletion Syndrome 13 (MTDPS13): A Case Report With a Comprehensive Mutation Review

    Get PDF
    Mitochondrial DNA depletion syndromes (MTDPS) are a group of rare genetic disorders caused by defects in multiple genes involved in mitochondrial DNA (mtDNA) maintenance. Among those, FBXL4 mutations result in the encephalomyopathic mtDNA depletion syndrome 13 (MTDPS13; OMIM #615471), which commonly presents as a combination of failure to thrive, neurodevelopmental delays, encephalopathy, hypotonia, and persistent lactic acidosis. We report here the case of a Lebanese infant presenting to us with profound neurodevelopmental delays, generalized hypotonia, facial dysmorphic features, and extreme emaciation. Whole-exome sequencing (WES) showed the girl as having MTDPS13 with an underlying FBXL4 missense mutation that has been previously reported only twice in unrelated individuals (c.1303C > T). Comprehensive literature search marked our patient as being the 94th case of MTDPS13 reported to date worldwide, and the first from Lebanon. We include at the end of this report a comprehensive mutation review table of all the pathological FBXL4 mutations reported in the literature, using it to highlight, for the first time, a possible founder effect of Arab origins to the disorder, being most prevalent in patients of Arab descent as shown in our mutation table. Finally, we provide a direct comparison of the disorder's clinical manifestations across two unrelated patients harboring the same disease-causing mutation as our patient, emphasizing the remarkable variability in genotype-to-phenotype correlation characteristic of the disease

    Origin of micro-scale heterogeneity in polymerisation of photo-activated resin composites

    Get PDF
    Photo-activated resin composites are widely used in industry and medicine. Despite extensive chemical characterisation, the micro-scale pattern of resin matrix reactive group conversion between filler particles is not fully understood. Using an advanced synchrotron-based wide-field IR imaging system and state-of-the-art Mie scattering corrections, we observe how the presence of monodispersed silica filler particles in a methacrylate based resin reduces local conversion and chemical bond strain in the polymer phase. Here we show that heterogeneity originates from a lower converted and reduced bond strain boundary layer encapsulating each particle, whilst at larger inter-particulate distances light attenuation and monomer mobility predominantly influence conversion. Increased conversion corresponds to greater bond strain, however, strain generation appears sensitive to differences in conversion rate and implies subtle distinctions in the final polymer structure. We expect these findings to inform current predictive models of mechanical behaviour in polymer-composite materials, particularly at the resin-filler interface

    Study of pallial neurogenesis in shark embryos and the evolutionary origin of the subventricular zone

    Get PDF
    The dorsal part of the developing telencephalon is one of the brain areas that has suffered most drastic changes throughout vertebrate evolution. Its evolutionary increase in complexity was thought to be partly achieved by the appearance of a new neurogenic niche in the embryonic subventricular zone (SVZ). Here, a new kind of amplifying progenitors (basal progenitors) expressing Tbr2, undergo a second round of divisions, which is believed to have contributed to the expansion of the neocortex. Accordingly, the existence of a pallial SVZ has been classically considered exclusive of mammals. However, the lack of studies in ancient vertebrates precludes any clear conclusion about the evolutionary origin of the SVZ and the neurogenic mechanisms that rule pallial development. In this work, we explore pallial neurogenesis in a basal vertebrate, the shark Scyliorhinus canicula, through the study of the expression patterns of several neurogenic markers. We found that apical progenitors and radial migration are present in sharks, and therefore, their presence must be highly conserved throughout evolution. Surprisingly, we detected a subventricular band of ScTbr2-expressing cells, some of which also expressed mitotic markers, indicating that the existence of basal progenitors should be considered an ancestral condition rather than a novelty of mammals or amniotes. Finally, we report that the transcriptional program for the specification of glutamatergic pallial cells (Pax6, Tbr2, NeuroD, Tbr1) is also present in sharks. However, the segregation of these markers into different cell types is not clear yet, which may be linked to the lack of layering in anamniotesThis work was supported by the Spanish Ministerio de EconomĂ­a y Competitividad-FEDER (BFU2014-5863-1P)S

    Consensus recommendations on the use of 18F-FDG PET/CT in lung disease

    Get PDF
    Positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG) has been increasingly applied, predominantly in the research setting, to study drug effects and pulmonary biology and monitor disease progression and treatment outcomes in lung diseases, disorders that interfere with gas exchange through alterations of the pulmonary parenchyma, airways and/or vasculature. To date, however, there are no widely accepted standard acquisition protocols and imaging data analysis methods for pulmonary 18F-FDG PET/CT in these diseases, resulting in disparate approaches. Hence, comparison of data across the literature is challenging. To help harmonize the acquisition and analysis and promote reproducibility, acquisition protocol and analysis method details were collated from seven PET centers. Based on this information and discussions among the authors, the consensus recommendations reported here on patient preparation, choice of dynamic versus static imaging, image reconstruction, and image analysis reporting were reached.                   </p
    corecore