112 research outputs found

    WeNMR : the tale of virtual research community in NMR and structural biology

    Get PDF
    Structural biology and life sciences in general, and NMR in particular, have always been associated with advanced computing. The current challenges in the post-genomic era call for virtual research platforms that provide the worldwide research community with both user-friendly tools, platforms for data analysis and exchange, and an underlying e-Infrastructure. WeNMR, a three-year European Commission co-funded project started in November 2010, groups different research teams into a worldwide virtual research community. It builds on the established eNMR e-Infrastructure and its steadily growing virtual organisation, which is currently the second largest VO in the area of life sciences. WeNMR provides an e-Infrastructure platform and Science Gateway for structural biology. It involves researchers from around the world and will build bridges to other areas of structural biology

    Traditional Biomolecular Structure Determination by NMR Spectroscopy Allows for Major Errors

    Get PDF
    One of the major goals of structural genomics projects is to determine the three-dimensional structure of representative members of as many different fold families as possible. Comparative modeling is expected to fill the remaining gaps by providing structural models of homologs of the experimentally determined proteins. However, for such an approach to be successful it is essential that the quality of the experimentally determined structures is adequate. In an attempt to build a homology model for the protein dynein light chain 2A (DLC2A) we found two potential templates, both experimentally determined nuclear magnetic resonance (NMR) structures originating from structural genomics efforts. Despite their high sequence identity (96%), the folds of the two structures are markedly different. This urged us to perform in-depth analyses of both structure ensembles and the deposited experimental data, the results of which clearly identify one of the two models as largely incorrect. Next, we analyzed the quality of a large set of recent NMR-derived structure ensembles originating from both structural genomics projects and individual structure determination groups. Unfortunately, a visual inspection of structures exhibiting lower quality scores than DLC2A reveals that the seriously flawed DLC2A structure is not an isolated incident. Overall, our results illustrate that the quality of NMR structures cannot be reliably evaluated using only traditional experimental input data and overall quality indicators as a reference and clearly demonstrate the urgent need for a tight integration of more sophisticated structure validation tools in NMR structure determination projects. In contrast to common methodologies where structures are typically evaluated as a whole, such tools should preferentially operate on a per-residue basis

    Brain structural covariance networks in obsessive-compulsive disorder: a graph analysis from the ENIGMA Consortium

    Get PDF
    Brain structural covariance networks reflect covariation in morphology of different brain areas and are thought to reflect common trajectories in brain development and maturation. Large-scale investigation of structural covariance networks in obsessive-compulsive disorder (OCD) may provide clues to the pathophysiology of this neurodevelopmental disorder. Using T1-weighted MRI scans acquired from 1616 individuals with OCD and 1463 healthy controls across 37 datasets participating in the ENIGMA-OCD Working Group, we calculated intra-individual brain structural covariance networks (using the bilaterally-averaged values of 33 cortical surface areas, 33 cortical thickness values, and six subcortical volumes), in which edge weights were proportional to the similarity between two brain morphological features in terms of deviation from healthy controls (i.e. z-score transformed). Global networks were characterized using measures of network segregation (clustering and modularity), network integration (global efficiency), and their balance (small-worldness), and their community membership was assessed. Hub profiling of regional networks was undertaken using measures of betweenness, closeness, and eigenvector centrality. Individually calculated network measures were integrated across the 37 datasets using a meta-analytical approach. These network measures were summated across the network density range of K = 0.10-0.25 per participant, and were integrated across the 37 datasets using a meta-analytical approach. Compared with healthy controls, at a global level, the structural covariance networks of OCD showed lower clustering (P < 0.0001), lower modularity (P < 0.0001), and lower small-worldness (P = 0.017). Detection of community membership emphasized lower network segregation in OCD compared to healthy controls. At the regional level, there were lower (rank-transformed) centrality values in OCD for volume of caudate nucleus and thalamus, and surface area of paracentral cortex, indicative of altered distribution of brain hubs. Centrality of cingulate and orbito-frontal as well as other brain areas was associated with OCD illness duration, suggesting greater involvement of these brain areas with illness chronicity. In summary, the findings of this study, the largest brain structural covariance study of OCD to date, point to a less segregated organization of structural covariance networks in OCD, and reorganization of brain hubs. The segregation findings suggest a possible signature of altered brain morphometry in OCD, while the hub findings point to OCD-related alterations in trajectories of brain development and maturation, particularly in cingulate and orbitofrontal regions

    Effects of Bergen 4-Day Treatment on Resting-State Graph Features in Obsessive-Compulsive Disorder

    Get PDF
    Background Exposure and response prevention is an effective treatment for obsessive-compulsive disorder (OCD), but it is unclear how symptom reduction is related to changes in the brain. We aimed to determine the effects of a 4-day concentrated exposure and response prevention program (Bergen 4-day treatment) on the static and dynamic functional connectome in patients with OCD. Methods Thirty-four patients with OCD (25 unmedicated) underwent resting-state functional magnetic resonance imaging the day before the Bergen 4-day treatment, and 28 (21 unmedicated) were rescanned after 1 week. Twenty-eight healthy control subjects were also scanned for baseline comparisons and 19 of them were rescanned after 1 week. Static and dynamic graph measures were quantified to determine network topology at the global, subnetwork, and regional levels (including efficiency, clustering, between-subnetwork connectivity, and node flexibility in module allegiance). The Yale-Brown Obsessive Compulsive Scale was used to measure symptom severity. Results Twenty-four patients (86%) responded to treatment. We found significant group × time effects in frontoparietal-limbic connectivity (ηp2 = .19, p = .03) and flexibility of the right subgenual anterior cingulate cortex (ηp2 = .18, p = .03), where, in both cases, unmedicated patients showed significant decreases while healthy control subjects showed no significant changes. Healthy control subjects showed increases in global and subnetwork efficiency and clustering coefficient, particularly in the somatomotor subnetwork. Conclusions Concentrated exposure and response prevention in unmedicated patients with OCD leads to decreased connectivity between the frontoparietal and limbic subnetworks and less flexibility of the connectivity of the subgenual anterior cingulate cortex, suggesting a more independent and stable network topology. This may represent less limbic interference on cognitive control subnetworks after treatment.acceptedVersio

    Longitudinal changes in neurometabolite concentrations in the dorsal anterior cingulate cortex after concentrated exposure therapy for obsessive-compulsive disorder

    Get PDF
    Background The dorsal anterior cingulate cortex (dACC) plays an important role in the pathophysiology of obsessive-compulsive disorder (OCD) due to its role in error processing, cognitive control and emotion regulation. OCD patients have shown altered concentrations in neurometabolites in the dACC, particularly Glx (glutamate+glutamine) and tNAA (N-acetylaspartate+N-acetyl-aspartyl-glutamate). We investigated the immediate and prolonged effects of exposure and response prevention (ERP) on these neurometabolites. Methods Glx and tNAA concentrations were measured using magnetic resonance spectroscopy (1H-MRS) in 24 OCD patients and 23 healthy controls at baseline. Patients received concentrated ERP over four days. A subset was re-scanned after one week and three months. Results No Glx and tNAA abnormalities were observed in OCD patients compared to healthy controls before treatment or over time. Patients with childhood or adult onset differed in the change over time in tNAA (F(2,40) = 7.24, ɳ2p= 0.27, p = 0.004): concentrations increased between one week after treatment and follow-up in the childhood onset group (t(39) = -2.43, d = -0.86, p = 0.020), whereas tNAA concentrations decreased between baseline and follow-up in patients with an adult onset (t(42) = 2.78, d = 1.07, p = 0.008). In OCD patients with versus without comorbid mood disorders, lower Glx concentrations were detected at baseline (t(38) = -2.28, d = -1.00, p = 0.028). Glx increased after one week of treatment within OCD patients with comorbid mood disorders (t(30) = -3.09, d = -1.21, p = 0.004). Limitations Our OCD sample size allowed the detection of moderate to large effect sizes only. Conclusion ERP induced changes in neurometabolites in OCD seem to be dependent on mood disorder comorbidity and disease stage rather than OCD itself.publishedVersio

    Altered Functional Connectivity in Resting State Networks in Tourette’s Disorder

    Get PDF
    Introduction: Brain regions are anatomically and functionally interconnected in order to facilitate important functions like cognition and movement. It remains incompletely understood how brain connectivity contributes to the pathophysiology of Tourette’s disorder (TD). By using resting-state functional MRI, we aimed to identify alterations in the default mode network (DMN), frontal-parietal network (FPN), sensori-motor network (SMN), and salience network (SN) in TD compared with healthy control (HC) subjects.Method: In 23 adult TD patients and 22 HC, 3T-MRI resting-state scans were obtained. Independent component analysis was performed comparing TD and HC to investigate connectivity patterns within and between resting-state networks.Results: TD patients showed higher involvement of the dorsal medial prefrontal cortex in the connectivity of the DMN and less involvement of the inferior parietal cortex in the connectivity of the FPN when compared to HC. Moreover, TD patients showed a stronger coupling between DMN and left FPN than HC. Finally, in TD patients, functional connectivity within DMN correlated negatively with tic severity.Conclusion: We tentatively interpret the increased functional connectivity within DMN in TD patients as compensatory to the lower functional connectivity within left FPN. The stronger coupling between DMN and left FPN, together with the finding that higher DMN intrinsic connectivity is associated with lower tic severity would indicate that DMN is recruited to exert motor inhibition

    (HIIT-The Track) High-Intensity Interval Training for People with Parkinson's Disease: Individual Response Patterns of (Non-)Motor Symptoms and Blood-Based Biomarkers-A Crossover Single-Case Experimental Design.

    Get PDF
    INTRODUCTION Physical exercise is receiving increasing interest as an augmentative non-pharmacological intervention in Parkinson's disease (PD). This pilot study primarily aimed to quantify individual response patterns of motor symptoms to alternating exercise modalities, along with non-motor functioning and blood biomarkers of neuroplasticity and neurodegeneration. MATERIALS & METHODS People with PD performed high-intensity interval training (HIIT) and continuous aerobic exercise (CAE) using a crossover single-case experimental design. A repeated assessment of outcome measures was conducted. The trajectories of outcome measures were visualized in time series plots and interpreted relative to the minimal clinically important difference (MCID) and smallest detectable change (SDC) or as a change in the positive or negative direction using trend lines. RESULTS Data of three participants were analyzed and engaging in physical exercise seemed beneficial for reducing motor symptoms. Participant 1 demonstrated improvement in motor function, independent of exercise modality; while for participant 2, such a clinically relevant (positive) change in motor function was only observed in response to CAE. Participant 3 showed improved motor function after HIIT, but no comparison could be made with CAE because of drop-out. Heterogeneous responses on secondary outcome measures were found, not only between exercise modalities but also among participants. CONCLUSION Though this study underpins the positive impact of physical exercise in the management of PD, large variability in individual response patterns to the interventions among participants makes it difficult to identify clear exercise-induced adaptations in functioning and blood biomarkers. Further research is needed to overcome methodological challenges in measuring individual response patterns

    Brain structural covariance networks in obsessive-compulsive disorder: a graph analysis from the ENIGMA Consortium.

    Get PDF
    Brain structural covariance networks reflect covariation in morphology of different brain areas and are thought to reflect common trajectories in brain development and maturation. Large-scale investigation of structural covariance networks in obsessive-compulsive disorder (OCD) may provide clues to the pathophysiology of this neurodevelopmental disorder. Using T1-weighted MRI scans acquired from 1616 individuals with OCD and 1463 healthy controls across 37 datasets participating in the ENIGMA-OCD Working Group, we calculated intra-individual brain structural covariance networks (using the bilaterally-averaged values of 33 cortical surface areas, 33 cortical thickness values, and six subcortical volumes), in which edge weights were proportional to the similarity between two brain morphological features in terms of deviation from healthy controls (i.e. z-score transformed). Global networks were characterized using measures of network segregation (clustering and modularity), network integration (global efficiency), and their balance (small-worldness), and their community membership was assessed. Hub profiling of regional networks was undertaken using measures of betweenness, closeness, and eigenvector centrality. Individually calculated network measures were integrated across the 37 datasets using a meta-analytical approach. These network measures were summated across the network density range of K = 0.10-0.25 per participant, and were integrated across the 37 datasets using a meta-analytical approach. Compared with healthy controls, at a global level, the structural covariance networks of OCD showed lower clustering (P &lt; 0.0001), lower modularity (P &lt; 0.0001), and lower small-worldness (P = 0.017). Detection of community membership emphasized lower network segregation in OCD compared to healthy controls. At the regional level, there were lower (rank-transformed) centrality values in OCD for volume of caudate nucleus and thalamus, and surface area of paracentral cortex, indicative of altered distribution of brain hubs. Centrality of cingulate and orbito-frontal as well as other brain areas was associated with OCD illness duration, suggesting greater involvement of these brain areas with illness chronicity. In summary, the findings of this study, the largest brain structural covariance study of OCD to date, point to a less segregated organization of structural covariance networks in OCD, and reorganization of brain hubs. The segregation findings suggest a possible signature of altered brain morphometry in OCD, while the hub findings point to OCD-related alterations in trajectories of brain development and maturation, particularly in cingulate and orbitofrontal regions

    Toward identifying reproducible brain signatures of obsessive-compulsive profiles: rationale and methods for a new global initiative

    Get PDF
    Background Obsessive-compulsive disorder (OCD) has a lifetime prevalence of 2–3% and is a leading cause of global disability. Brain circuit abnormalities in individuals with OCD have been identified, but important knowledge gaps remain. The goal of the new global initiative described in this paper is to identify robust and reproducible brain signatures of measurable behaviors and clinical symptoms that are common in individuals with OCD. A global approach was chosen to accelerate discovery, to increase rigor and transparency, and to ensure generalizability of results. Methods We will study 250 medication-free adults with OCD, 100 unaffected adult siblings of individuals with OCD, and 250 healthy control subjects at five expert research sites across five countries (Brazil, India, Netherlands, South Africa, and the U.S.). All participants will receive clinical evaluation, neurocognitive assessment, and magnetic resonance imaging (MRI). The imaging will examine multiple brain circuits hypothesized to underlie OCD behaviors, focusing on morphometry (T1-weighted MRI), structural connectivity (Diffusion Tensor Imaging), and functional connectivity (resting-state fMRI). In addition to analyzing each imaging modality separately, we will also use multi-modal fusion with machine learning statistical methods in an attempt to derive imaging signatures that distinguish individuals with OCD from unaffected siblings and healthy controls (Aim #1). Then we will examine how these imaging signatures link to behavioral performance on neurocognitive tasks that probe these same circuits as well as to clinical profiles (Aim #2). Finally, we will explore how specific environmental features (childhood trauma, socioeconomic status, and religiosity) moderate these brain-behavior associations. Discussion Using harmonized methods for data collection and analysis, we will conduct the largest neurocognitive and multimodal-imaging study in medication-free subjects with OCD to date. By recruiting a large, ethno-culturally diverse sample, we will test whether there are robust biosignatures of core OCD features that transcend countries and cultures. If so, future studies can use these brain signatures to reveal trans-diagnostic disease dimensions, chart when these signatures arise during development, and identify treatments that target these circuit abnormalities directly. The long-term goal of this research is to change not only how we conceptualize OCD but also how we diagnose and treat it

    Tools and data services registry: a community effort to document bioinformatics resources

    Get PDF
    Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand. Here we present a community-driven curation effort, supported by ELIXIR—the European infrastructure for biological information—that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners. As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools
    corecore