435 research outputs found

    Detection and characterization of liver lesions using gadoxetic acid as a tissue-specific contrast agent

    Get PDF
    The value of cross-sectional liver imaging is evaluated by the accuracy, sensitivity, and specificity of the specific imaging technique. Magnetic resonance imaging (MRI) has become a key technique for the characterization and detection of focal and diffuse liver disease. More recently, gadoxetic acid, the hepatocyte-specific MR contrast agent, was clinically approved and introduced in many countries. Gadoxetic acid may be considered a “molecular imaging” probe because the compound is actively taken into hepatocytes via the ATP-dependent organic anion transport system in the plasma membrane for the hepatic uptake. The transport of gadoxetic acid from the cytoplasm to the bile is mainly determined by the capacity of the transport protein glutathione-S-transferase. Gadoxetic acid enhances hepatocyte-containing lesions and improves detection of lesions devoid of normal hepatocytes, such as metastases. Innovative rapid MR acquisition techniques with near isotropic 3D pulse sequences with fat saturation parallel the technical progress made by multidetector computed tomography combined with an impressive improvement in tumor–liver contrast when used for gadoxetic acid-enhanced MRI. The purpose of this review is to provide an overview of the development, clinical testing, and applications of this novel MR contrast agent

    Subset- and tissue-defined STAT5 thresholds control homeostasis and function of innate lymphoid cells

    Get PDF
    Innate lymphoid cells (ILCs) patrol environmental interfaces to defend against infection and protect barrier integrity. Using a genetic tuning model, we demonstrate that the signal-dependent transcription factor (TF) STAT5 is critical for accumulation of all known ILC subsets in mice and reveal a hierarchy of STAT5 dependency for populating lymphoid and nonlymphoid tissues. We apply transcriptome and genomic distribution analyses to define a STAT5 gene signature in natural killer (NK) cells, the prototypical ILC subset, and provide a systems-based molecular rationale for its key functions downstream of IL-15. We also uncover surprising features of STAT5 behavior, most notably the wholesale redistribution that occurs when NK cells shift from tonic signaling to acute cytokine-driven signaling, and genome-wide coordination with T-bet, another key TF in ILC biology. Collectively, our data position STAT5 as a central node in the TF network that instructs ILC development, homeostasis, and function and provide mechanistic insights on how it works at cellular and molecular levels

    IL-7 and IL-15 independently program the differentiation of intestinal CD3−NKp46+ cell subsets from Id2-dependent precursors

    Get PDF
    The natural cytotoxicity receptor NKp46 (encoded by Ncr1) was recently shown to identify a subset of noncytotoxic, Rag-independent gut lymphocytes that express the transcription factor Rorc, produce interleukin (IL)-22, and provide innate immune protection at the intestinal mucosa. Intestinal CD3−NKp46+ cells are phenotypically heterogeneous, comprising a minority subset that resembles classical mature splenic natural killer (NK) cells (NK1.1+, Ly49+) but also a large CD127+NK1.1− subset of lymphoid tissue inducer (LTi)–like Rorc+ cells that has been proposed to include NK cell precursors. We investigated the developmental relationships between these intestinal CD3−NKp46+ subsets. Gut CD3−NKp46+ cells were related to LTi and NK cells in requiring the transcriptional inhibitor Id2 for normal development. Overexpression of IL-15 in intestinal epithelial cells expanded NK1.1+ cells within the gut but had no effect on absolute numbers of the CD127+NK1.1−Rorc+ subset of CD3−NKp46+ cells. In contrast, IL-7 deficiency strongly reduced the overall numbers of CD3−NKp46+NK1.1− cells that express Rorc and produce IL-22 but failed to restrict homeostasis of classical intestinal NK1.1+ cells. Finally, in vivo fate-mapping experiments demonstrated that intestinal NK1.1+CD127− cells are not the progeny of Rorc-expressing progenitors, indicating that CD127+NK1.1−Rorc+ cells are not canonical NK cell precursors. These studies highlight the independent cytokine regulation of functionally diverse intestinal NKp46+ cell subsets

    CD11cloB220+ interferon-producing killer dendritic cells are activated natural killer cells

    Get PDF
    Interferon-producing killer dendritic cells (IKDCs) are a recently described subset of CD11cloB220+ cells that share phenotypic and functional properties of DCs and natural killer (NK) cells (Chan, C.W., E. Crafton, H.N. Fan, J. Flook, K. Yoshimura, M. Skarica, D. Brockstedt, T.W. Dubensky, M.F. Stins, L.L. Lanier, et al. 2006. Nat. Med. 12:207–213; Taieb, J., N. Chaput, C. Menard, L. Apetoh, E. Ullrich, M. Bonmort, M. Pequignot, N. Casares, M. Terme, C. Flament, et al. 2006. Nat. Med. 12:214–219). IKDC development appears unusual in that cytokines using the interleukin (IL)-2 receptor β (IL-2Rβ) chain but not those using the common γ chain (γc) are necessary for their generation. By directly comparing Rag2−/−γc−/y, Rag2−/−IL-2Rβ−/−, Rag2−/−IL-15−/−, and Rag2−/−IL-2−/− mice, we demonstrate that IKDC development parallels NK cell development in its strict IL-15 dependence. Moreover, IKDCs uniformly express NK-specific Ncr-1 transcripts (encoding NKp46), whereas NKp46+ cells are absent in Ncr1gfp/+γc−/y mice. Distinguishing features of IKDCs (CD11cloB220+MHC-II+) were carefully examined on developing NK cells in the bone marrow and on peripheral NK cells. As B220 expression was heterogeneous, defining B220lo versus B220hi NK1.1+ NK cells could be considered as arbitrary, and few phenotypic differences were noted between NK1.1+ NK cells bearing different levels of B220. CD11c expression did not correlate with B220 or major histocompatibility complex (MHC) class II (MHC-II) expression, and most MHC-II+ NK1.1+ cells did not express B220 and were thus not IKDCs. Finally, CD11c, MHC-II, and B220 levels were up-regulated on NK1.1+ cells upon activation in vitro or in vivo in a proliferation-dependent fashion. Our data suggest that the majority of CD11cloB220+ “IKDC-like” cells represent activated NK cells

    Core binding factors are necessary for natural killer cell development, and cooperate with Notch signaling during T cell specification

    Get PDF
    CBF{beta} is the non-DNA binding subunit of the core binding factors (CBFs). Mice with reduced CBF{beta} levels display profound, early defects in T but not B cell development. Here we show that CBF{beta} is also required at very early stages of natural killer (NK) cell development. We also demonstrate that T cell development aborts during specification, as the expression of Gata3 and Tcf7, which encode key regulators of T lineage specification, is substantially reduced, as are functional thymic progenitors. Constitutively active Notch or IL-7 signaling cannot restore T cell expansion or differentiation of CBF{beta} insufficient cells, nor can overexpression of Runx1 or CBF{beta} overcome a lack of Notch signaling. Therefore the ability of the prethymic cell to respond appropriately to Notch is dependent on CBF{beta}, and both signals converge to activate the T cell developmental program

    The Transcription Factor Tcf1 Contributes to Normal NK Cell Development and Function by Limiting the Expression of Granzymes.

    Get PDF
    The transcription factor Tcf1 is essential for the development of natural killer (NK) cells. However, its precise role has not been clarified. Our combined analysis of Tcf1-deficient and transgenic mice indicated that Tcf1 guides NK cells through three stages of development. Tcf1 expression directed bone marrow progenitors toward the NK cell lineage and ensured the survival of NK-committed cells, and its downregulation was needed for terminal maturation. Impaired survival of NK-committed cells was due to excessive expression of granzyme B (GzmB) and other granzyme family members, which induced NK cell self-destruction during maturation and following activation with cytokines or target cells. Mechanistically, Tcf1 binding reduced the activity of a Gzmb-associated regulatory element, and this accounted for the reduced Gzmb expression in Tcf1-expressing NK cells. These data identify an unexpected requirement to limit the expression of cytotoxic effector molecules for the normal expansion and function of NK cells

    Natural killer receptors: the burden of a name

    Get PDF
    A population of cells that expresses the NK cell receptor NKp46 and produces interleukin (IL)-22 have recently attracted considerable attention. The identity of these cells is still the subject of speculation, being variably defined as a novel NK cell subset or as a population containing conventional NK (cNK) cell precursors. In this issue, two studies shed light on this conundrum, demonstrating that NKp46+ IL-22+ cells and cNK cells belong to distinct lineages

    Calorie Restriction Attenuates Terminal Differentiation of Immune Cells

    Get PDF
    Immune senescence is a natural consequence of aging and may contribute to frailty and loss of homeostasis in later life. Calorie restriction increases healthy life-span in C57BL/6J (but not DBA/2J) mice, but whether this is related to preservation of immune function, and how it interacts with aging, is unclear. We compared phenotypic and functional characteristics of natural killer (NK) cells and T cells, across the lifespan, of calorie-restricted (CR) and control C57BL/6 and DBA/2 mice. Calorie restriction preserves a naïve T cell phenotype and an immature NK cell phenotype as mice age. The splenic T cell populations of CR mice had higher proportions of CD11a-CD44lo cells, lower expression of TRAIL, KLRG1, and CXCR3, and higher expression of CD127, compared to control mice. Similarly, splenic NK cells from CR mice had higher proportions of less differentiated CD11b-CD27+ cells and correspondingly lower proportions of highly differentiated CD11b+CD27-NK cells. Within each of these subsets, cells from CR mice had higher expression of CD127, CD25, TRAIL, NKG2A/C/E, and CXCR3 and lower expression of KLRG1 and Ly49 receptors compared to controls. The effects of calorie restriction on lymphoid cell populations in lung, liver, and lymph nodes were identical to those seen in the spleen, indicating that this is a system-wide effect. The impact of calorie restriction on NK cell and T cell maturation is much more profound than the effect of aging and, indeed, calorie restriction attenuates these age-associated changes. Importantly, the effects of calorie restriction on lymphocyte maturation were more marked in C57BL/6 than in DBA/2J mice indicating that delayed lymphocyte maturation correlates with extended lifespan. These findings have implications for understanding the interaction between nutritional status, immunity, and healthy lifespan in aging populations
    corecore